A general description of ARTS can be found in the following articles. If you use ARTS for a publication, please cite at least one of them.

  1. Buehler, S. A., J. Mendrok, P. Eriksson, A. Perrin, R. Larsson, and O. Lemke (2018),
    ARTS, the atmospheric radiative transfer simulator — version 2.2, the planetary toolbox edition,
    Geosci. Model Dev., 11(4), 1537–1556, doi:10.5194/gmd-11-1537-2018.
  2. Eriksson, P., S. A. Buehler, C. P. Davis, C. Emde, and O. Lemke (2011),
    ARTS, the atmospheric radiative transfer simulator, Version 2,
    J. Quant. Spectrosc. Radiat. Transfer, doi:10.1016/j.jqsrt.2011.03.001.
  3. Buehler, S. A., P. Eriksson, T. Kuhn, A. von Engeln and C. Verdes (2005),
    ARTS, the Atmospheric Radiative Transfer Simulator,
    J. Quant. Spectrosc. Radiat. Transfer, 91(1), 65-93, doi:10.1016/j.jqsrt.2004.05.051.

Several algorithms used in ARTS are described in the following articles. Please cite them in your publication if you use the corresponding ARTS feature.

  1. Buehler, S. A., M. Brath, O. Lemke, Ø. Hodnebrog, R. Pincus, P. Eriksson, I. Gordon, and R. Larsson (2022),
    A new halocarbon absorption model based on HITRAN cross-section data and new estimates of halocarbon instantaneous clear-sky radiative forcing,
    J. Adv. Model. Earth Syst., 14(11), e2022MS003239, doi: 10.1029/2022MS003239.
  2. Larsson, R., B. Lankhaar, and P. Eriksson (2019),
    Updated Zeeman effect splitting coefficients for molecular oxygen in planetary applications,
    J. Quant. Spectrosc. Radiat. Transfer, 224, 431–438, doi:10.1016/j.jqsrt.2018.12.004.
  3. Yamada, T., L. Rezac, R. Larsson, P. Hartogh, N. Yoshida, and Y. Kasai (2018),
    Solving non-LTE problems in rotational transitions using the Gauss-Seidel method and its implementation in the Atmospheric Radiative Transfer Simulator,
    A&A, 619, A181, doi:10.1051/0004-6361/201833566.
  4. Alex Bobryshev (2015),
    Frequency grid setups for microwave radiometers AMSU-A and AMSU-B,
    Technical report.
  5. Larsson, R., S. A. Buehler, P. Eriksson, and J. Mendrok (2014),
    A treatment of the Zeeman effect using Stokes formalism and its implementation in the Atmospheric Radiative Transfer Simulator (ARTS),
    J. Quant. Spectrosc. Radiat. Transfer, 133, 445–453, doi:10.1016/j.jqsrt.2013.09.006.
  6. Buehler, S. A., P. Eriksson, and O. Lemke (2011),
    Absorption lookup tables in the radiative transfer model ARTS,
    J. Quant. Spectrosc. Radiat. Transfer, doi:10.1016/j.jqsrt.2011.03.008.
  7. Buehler, S. A., V. O. John, A. Kottayil, M. Milz and P. Eriksson (2010),
    Efficient Radiative Transfer Simulations for a Broadband Infrared Radiometer — Combining a Weighted Mean of Representative Frequencies Approach with Frequency Selection by Simulated Annealing,
    J. Quant. Spectrosc. Radiat. Transfer, 111(4), 602–615, doi:10.1016/j.jqsrt.2009.10.018.
  8. Eriksson, P., M. Ekström, C. Melsheimer and S. A. Buehler (2006),
    Efficient forward modelling by matrix representation of sensor responses,
    Int. J. Remote Sensing, 27(9–10), 1793–1808, doi:10.1080/01431160500447254.
  9. Davis, C., C. Emde and R. Harwood (2005),
    A 3D Polarized Reversed Monte Carlo Radiative Transfer Model for mm and sub-mm Passive Remote Sensing in Cloudy Atmospheres,
    IEEE T. Geosci. & Rem. Sens., 43(5), 1096–1101, doi:10.1109/TGRS.2004.837505.
  10. Emde, C., S. A. Buehler, C. Davis, P. Eriksson, Sreerekha T. R. and C. Teichmann (2004),
    A Polarized Discrete Ordinate Scattering Model for Simulations of Limb and Nadir Longwave Measurements in 1D/3D Spherical Atmospheres,
    J. Geophys. Res., 109(D24), D24207, doi:10.1029/2004JD005140.

Copyright Information

©AGU:  Copyright American Geophysical Union.
©EGU:  Copyright EGU – European Geosciences Union.
©Elsevier:  Copyright Elsevier Ltd. All rights reserved.
©IEEE:  Copyright IEEE. All Rights Reserved.