» Home » Documentation


Online Docs

Stable Version

Please note that the crosslinks between the PDF documents only work if you download all three books and save them in the same directory.

  • ARTS User Guide PDF: Guide for ARTS users.
  • ARTS Developer Guide PDF: Guide for ARTS developers.
  • ARTS Theory PDF: Describes the theoretical basis of many ARTS algorithms.
  • ARTS built-in documentation browser: This is the preferred way of accessing the ARTS built-in documentation. It provides a browsable HTML version of the documentation including all workspace methods, variables, agendas and groups. You can also run it locally on your own computer with arts -s.

Development Version


A general description of ARTS can be found in the following articles. If you use ARTS for a publication, please cite at least one of them.

  1. Eriksson, P., S. A. Buehler, C. P. Davis, C. Emde, and O. Lemke (2011),
    ARTS, the atmospheric radiative transfer simulator, Version 2,
    J. Quant. Spectrosc. Radiat. Transfer, doi:10.1016/j.jqsrt.2011.03.001.
  2. Buehler, S. A., P. Eriksson, T. Kuhn, A. von Engeln and C. Verdes (2005),
    ARTS, the Atmospheric Radiative Transfer Simulator,
    J. Quant. Spectrosc. Radiat. Transfer, 91(1), 65-93, doi:10.1016/j.jqsrt.2004.05.051.

Several algorithms used in ARTS are described in the following articles. Please cite them in your publication if you use the corresponding ARTS feature.

  1. Larsson, R., S. A. Buehler, P. Eriksson, and J. Mendrok (2014),
    A treatment of the Zeeman effect using Stokes formalism and its implementation in the Atmospheric Radiative Transfer Simulator (ARTS),
    J. Quant. Spectrosc. Radiat. Transfer, 133, 445–453, doi:10.1016/j.jqsrt.2013.09.006.
  2. Buehler, S. A., P. Eriksson, and O. Lemke (2011),
    Absorption lookup tables in the radiative transfer model ARTS,
    J. Quant. Spectrosc. Radiat. Transfer, doi:10.1016/j.jqsrt.2011.03.008.
  3. Buehler, S. A., V. O. John, A. Kottayil, M. Milz and P. Eriksson (2010),
    Efficient Radiative Transfer Simulations for a Broadband Infrared Radiometer — Combining a Weighted Mean of Representative Frequencies Approach with Frequency Selection by Simulated Annealing,
    J. Quant. Spectrosc. Radiat. Transfer, 111(4), 602–615, doi:10.1016/j.jqsrt.2009.10.018.
  4. Eriksson, P., M. Ekström, C. Melsheimer and S. A. Buehler (2006),
    Efficient forward modelling by matrix representation of sensor responses,
    Int. J. Remote Sensing, 27(9–10), 1793–1808, doi:10.1080/01431160500447254.
  5. Davis, C., C. Emde and R. Harwood (2005),
    A 3D Polarized Reversed Monte Carlo Radiative Transfer Model for mm and sub-mm Passive Remote Sensing in Cloudy Atmospheres,
    IEEE T. Geosci. & Rem. Sens., 43(5), 1096–1101, doi:10.1109/TGRS.2004.837505.
  6. Emde, C., S. A. Buehler, C. Davis, P. Eriksson, Sreerekha T. R. and C. Teichmann (2004),
    A Polarized Discrete Ordinate Scattering Model for Simulations of Limb and Nadir Longwave Measurements in 1D/3D Spherical Atmospheres,
    J. Geophys. Res., 109(D24), D24207, doi:10.1029/2004JD005140.

Technical Reports


  • Test control files: The directory controlfiles in the ARTS distribution contains control files for various standard cases. You can use them as a starting point for your own control files.

Source Code

Copyright Information

©AGU:  Copyright American Geophysical Union.
©Elsevier:  Copyright Elsevier Ltd. All rights reserved.
©IEEE:  Copyright IEEE. All Rights Reserved.