FullyConnected
- class typhon.retrieval.qrnn.models.keras.FullyConnected(*args, **kwargs)[source]
Keras implementation of fully-connected networks.
- __init__(input_dimension, quantiles, arch, layers=None)[source]
Create a fully-connected neural network.
- Parameters:
input_dimension (
int) – Number of input featuresquantiles (
array) – The quantiles to predict given as fractions within [0, 1].arch (tuple) – Tuple
(d, w, a)containingd, the number of hidden layers in the network,w, the width of the network anda, the type of activation functions to be used as string.
Methods
__init__(input_dimension, quantiles, arch[, ...])Create a fully-connected neural network.
add(layer[, rebuild])Adds a layer instance on top of the layer stack.
add_loss(loss)Can be called inside of the call() method to add a scalar loss.
add_variable(shape, initializer[, dtype, ...])Add a weight variable to the layer.
add_weight([shape, initializer, dtype, ...])Add a weight variable to the layer.
build([input_shape])build_from_config(config)Builds the layer's states with the supplied config dict.
call(inputs[, training, mask])compile([optimizer, loss, loss_weights, ...])Configures the model for training.
compile_from_config(config)Compiles the model with the information given in config.
compiled_loss(y, y_pred[, sample_weight, ...])compute_loss([x, y, y_pred, sample_weight, ...])Compute the total loss, validate it, and return it.
compute_mask(inputs, previous_mask)compute_metrics(x, y, y_pred[, sample_weight])Update metric states and collect all metrics to be returned.
compute_output_shape(*args, **kwargs)compute_output_spec(inputs[, training, mask])Count the total number of scalars composing the weights.
evaluate([x, y, batch_size, verbose, ...])Returns the loss value & metrics values for the model in test mode.
export(filepath[, format])[TF backend only]* Create a TF SavedModel artifact for inference (e.g. via TF-Serving).
fit([x, y, batch_size, epochs, verbose, ...])Trains the model for a fixed number of epochs (dataset iterations).
from_config(config[, custom_objects])Creates a layer from its config.
Returns a dictionary with the layer's input shape.
Returns a serialized config with information for compiling the model.
Returns the config of the object.
get_layer([name, index])Retrieves a layer based on either its name (unique) or index.
Returns the model's metrics values as a dict.
Return the values of layer.weights as a list of NumPy arrays.
load_own_variables(store)Loads the state of the layer.
load_weights(filepath[, skip_mismatch])Load weights from a file saved via save_weights().
loss(y, y_pred[, sample_weight])make_predict_function([force])make_test_function([force])make_train_function([force])pop([rebuild])Removes the last layer in the model.
predict(x[, batch_size, verbose, steps, ...])Generates output predictions for the input samples.
Returns predictions for a single batch of samples.
predict_step(data)quantize(mode)Quantize the weights of the model.
quantized_call(*args, **kwargs)reset()Reinitialize the state of the model.
save(filepath[, overwrite])Saves a model as a .keras file.
save_own_variables(store)Saves the state of the layer.
save_weights(filepath[, overwrite])Saves all layer weights to a .weights.h5 file.
set_weights(weights)Sets the values of layer.weights from a list of NumPy arrays.
stateless_call(trainable_variables, ...[, ...])Call the layer without any side effects.
summary([line_length, positions, print_fn, ...])Prints a string summary of the network.
symbolic_call(*args, **kwargs)test_on_batch(x[, y, sample_weight, return_dict])Test the model on a single batch of samples.
test_step(data)to_json(**kwargs)Returns a JSON string containing the network configuration.
train(training_data[, validation_data, ...])train_on_batch(x[, y, sample_weight, ...])Runs a single gradient update on a single batch of data.
train_step(data)Attributes
compiled_metricscompute_dtypeThe dtype of the computations performed by the layer.
distribute_reduction_methoddistribute_strategydtypeAlias of layer.variable_dtype.
inputRetrieves the input tensor(s) of a symbolic operation.
input_dtypeThe dtype layer inputs should be converted to.
input_shapeinput_specinputsjit_compilelayerslossesList of scalar losses from add_loss, regularizers and sublayers.
metricsmetrics_namesmetrics_variablesList of all metric variables.
non_trainable_variablesList of all non-trainable layer state.
non_trainable_weightsList of all non-trainable weight variables of the layer.
outputRetrieves the output tensor(s) of a layer.
output_shapeoutputsrun_eagerlysupports_maskingWhether this layer supports computing a mask using compute_mask.
trainableSettable boolean, whether this layer should be trainable or not.
trainable_variablesList of all trainable layer state.
trainable_weightsList of all trainable weight variables of the layer.
variable_dtypeThe dtype of the state (weights) of the layer.
variablesList of all layer state, including random seeds.
weightsList of all weight variables of the layer.