FullyConnected
- class typhon.retrieval.qrnn.models.keras.FullyConnected(*args, **kwargs)[source]
Keras implementation of fully-connected networks.
- __init__(input_dimension, quantiles, arch, layers=None)[source]
Create a fully-connected neural network.
- Parameters:
input_dimension (
int
) – Number of input featuresquantiles (
array
) – The quantiles to predict given as fractions within [0, 1].arch (tuple) – Tuple
(d, w, a)
containingd
, the number of hidden layers in the network,w
, the width of the network anda
, the type of activation functions to be used as string.
Methods
__init__
(input_dimension, quantiles, arch[, ...])Create a fully-connected neural network.
add
(layer[, rebuild])Adds a layer instance on top of the layer stack.
add_loss
(loss)Can be called inside of the call() method to add a scalar loss.
add_variable
(shape, initializer[, dtype, ...])Add a weight variable to the layer.
add_weight
([shape, initializer, dtype, ...])Add a weight variable to the layer.
build
([input_shape])build_from_config
(config)Builds the layer's states with the supplied config dict.
call
(inputs[, training, mask])compile
([optimizer, loss, loss_weights, ...])Configures the model for training.
compile_from_config
(config)Compiles the model with the information given in config.
compiled_loss
(y, y_pred[, sample_weight, ...])compute_loss
([x, y, y_pred, sample_weight, ...])Compute the total loss, validate it, and return it.
compute_mask
(inputs, previous_mask)compute_metrics
(x, y, y_pred[, sample_weight])Update metric states and collect all metrics to be returned.
compute_output_shape
(*args, **kwargs)compute_output_spec
(inputs[, training, mask])Count the total number of scalars composing the weights.
evaluate
([x, y, batch_size, verbose, ...])Returns the loss value & metrics values for the model in test mode.
export
(filepath[, format])[TF backend only]* Create a TF SavedModel artifact for inference (e.g. via TF-Serving).
fit
([x, y, batch_size, epochs, verbose, ...])Trains the model for a fixed number of epochs (dataset iterations).
from_config
(config[, custom_objects])Creates a layer from its config.
Returns a dictionary with the layer's input shape.
Returns a serialized config with information for compiling the model.
Returns the config of the object.
get_layer
([name, index])Retrieves a layer based on either its name (unique) or index.
Returns the model's metrics values as a dict.
Return the values of layer.weights as a list of NumPy arrays.
load_own_variables
(store)Loads the state of the layer.
load_weights
(filepath[, skip_mismatch])Load weights from a file saved via save_weights().
loss
(y, y_pred[, sample_weight])make_predict_function
([force])make_test_function
([force])make_train_function
([force])pop
([rebuild])Removes the last layer in the model.
predict
(x[, batch_size, verbose, steps, ...])Generates output predictions for the input samples.
Returns predictions for a single batch of samples.
predict_step
(data)quantize
(mode)Quantize the weights of the model.
quantized_call
(*args, **kwargs)reset
()Reinitialize the state of the model.
save
(filepath[, overwrite])Saves a model as a .keras file.
save_own_variables
(store)Saves the state of the layer.
save_weights
(filepath[, overwrite])Saves all layer weights to a .weights.h5 file.
set_weights
(weights)Sets the values of layer.weights from a list of NumPy arrays.
stateless_call
(trainable_variables, ...[, ...])Call the layer without any side effects.
summary
([line_length, positions, print_fn, ...])Prints a string summary of the network.
symbolic_call
(*args, **kwargs)test_on_batch
(x[, y, sample_weight, return_dict])Test the model on a single batch of samples.
test_step
(data)to_json
(**kwargs)Returns a JSON string containing the network configuration.
train
(training_data[, validation_data, ...])train_on_batch
(x[, y, sample_weight, ...])Runs a single gradient update on a single batch of data.
train_step
(data)Attributes
compiled_metrics
compute_dtype
The dtype of the computations performed by the layer.
distribute_reduction_method
distribute_strategy
dtype
Alias of layer.variable_dtype.
input
Retrieves the input tensor(s) of a symbolic operation.
input_dtype
The dtype layer inputs should be converted to.
input_shape
input_spec
inputs
jit_compile
layers
losses
List of scalar losses from add_loss, regularizers and sublayers.
metrics
metrics_names
metrics_variables
List of all metric variables.
non_trainable_variables
List of all non-trainable layer state.
non_trainable_weights
List of all non-trainable weight variables of the layer.
output
Retrieves the output tensor(s) of a layer.
output_shape
outputs
run_eagerly
supports_masking
Whether this layer supports computing a mask using compute_mask.
trainable
Settable boolean, whether this layer should be trainable or not.
trainable_variables
List of all trainable layer state.
trainable_weights
List of all trainable weight variables of the layer.
variable_dtype
The dtype of the state (weights) of the layer.
variables
List of all layer state, including random seeds.
weights
List of all weight variables of the layer.