set_weights
- FullyConnected.set_weights(weights)
Sets the weights of the layer, from NumPy arrays.
The weights of a layer represent the state of the layer. This function sets the weight values from numpy arrays. The weight values should be passed in the order they are created by the layer. Note that the layer’s weights must be instantiated before calling this function, by calling the layer.
For example, a Dense layer returns a list of two values: the kernel matrix and the bias vector. These can be used to set the weights of another Dense layer:
>>> layer_a = tf.keras.layers.Dense(1, ... kernel_initializer=tf.constant_initializer(1.)) >>> a_out = layer_a(tf.convert_to_tensor([[1., 2., 3.]])) >>> layer_a.get_weights() [array([[1.], [1.], [1.]], dtype=float32), array([0.], dtype=float32)] >>> layer_b = tf.keras.layers.Dense(1, ... kernel_initializer=tf.constant_initializer(2.)) >>> b_out = layer_b(tf.convert_to_tensor([[10., 20., 30.]])) >>> layer_b.get_weights() [array([[2.], [2.], [2.]], dtype=float32), array([0.], dtype=float32)] >>> layer_b.set_weights(layer_a.get_weights()) >>> layer_b.get_weights() [array([[1.], [1.], [1.]], dtype=float32), array([0.], dtype=float32)]
- Parameters:
weights – a list of NumPy arrays. The number of arrays and their shape must match number of the dimensions of the weights of the layer (i.e. it should match the output of get_weights).
- Raises:
ValueError – If the provided weights list does not match the layer’s specifications.