FullyConnected
- class typhon.retrieval.qrnn.models.keras.FullyConnected(*args, **kwargs)[source]
Keras implementation of fully-connected networks.
- __init__(input_dimension, quantiles, arch, layers=None)[source]
Create a fully-connected neural network.
- Parameters:
input_dimension (
int) – Number of input featuresquantiles (
array) – The quantiles to predict given as fractions within [0, 1].arch (tuple) – Tuple
(d, w, a)containingd, the number of hidden layers in the network,w, the width of the network anda, the type of activation functions to be used as string.
Methods
__init__(input_dimension, quantiles, arch[, ...])Create a fully-connected neural network.
add(layer)Adds a layer instance on top of the layer stack.
add_loss(losses, **kwargs)Add loss tensor(s), potentially dependent on layer inputs.
add_metric(value[, name])Adds metric tensor to the layer.
add_update(updates)Add update op(s), potentially dependent on layer inputs.
add_variable(*args, **kwargs)Deprecated, do NOT use! Alias for add_weight.
add_weight([name, shape, dtype, ...])Adds a new variable to the layer.
build([input_shape])Builds the model based on input shapes received.
build_from_config(config)Builds the layer's states with the supplied config dict.
call(inputs[, training, mask])Calls the model on new inputs.
compile([optimizer, loss, metrics, ...])Configures the model for training.
compile_from_config(config)Compiles the model with the information given in config.
compute_loss([x, y, y_pred, sample_weight])Compute the total loss, validate it, and return it.
compute_mask(inputs, mask)Computes an output mask tensor.
compute_metrics(x, y, y_pred, sample_weight)Update metric states and collect all metrics to be returned.
compute_output_shape(input_shape)Computes the output shape of the layer.
compute_output_signature(input_signature)Compute the output tensor signature of the layer based on the inputs.
Count the total number of scalars composing the weights.
evaluate([x, y, batch_size, verbose, ...])Returns the loss value & metrics values for the model in test mode.
evaluate_generator(generator[, steps, ...])Evaluates the model on a data generator.
export(filepath)Create a SavedModel artifact for inference (e.g. via TF-Serving).
Finalizes the layers state after updating layer weights.
fit([x, y, batch_size, epochs, verbose, ...])Trains the model for a fixed number of epochs (dataset iterations).
fit_generator(generator[, steps_per_epoch, ...])Fits the model on data yielded batch-by-batch by a Python generator.
from_config(config[, custom_objects])Creates a layer from its config.
Returns a dictionary with the layer's input shape.
Returns a serialized config with information for compiling the model.
Returns the config of the Model.
get_input_at(node_index)Retrieves the input tensor(s) of a layer at a given node.
get_input_mask_at(node_index)Retrieves the input mask tensor(s) of a layer at a given node.
get_input_shape_at(node_index)Retrieves the input shape(s) of a layer at a given node.
get_layer([name, index])Retrieves a layer based on either its name (unique) or index.
Returns the model's metrics values as a dict.
get_output_at(node_index)Retrieves the output tensor(s) of a layer at a given node.
get_output_mask_at(node_index)Retrieves the output mask tensor(s) of a layer at a given node.
get_output_shape_at(node_index)Retrieves the output shape(s) of a layer at a given node.
Retrieve all the variables and their paths for the model.
Retrieves the weights of the model.
load_own_variables(store)Loads the state of the layer.
load_weights(filepath[, skip_mismatch, ...])Loads all layer weights from a saved files.
make_predict_function([force])Creates a function that executes one step of inference.
make_test_function([force])Creates a function that executes one step of evaluation.
make_train_function([force])Creates a function that executes one step of training.
pop()Removes the last layer in the model.
predict(x[, batch_size, verbose, steps, ...])Generates output predictions for the input samples.
predict_generator(generator[, steps, ...])Generates predictions for the input samples from a data generator.
Returns predictions for a single batch of samples.
predict_step(data)The logic for one inference step.
reset()Reinitialize the state of the model.
Resets the state of all the metrics in the model.
save(filepath[, overwrite, save_format])Saves a model as a TensorFlow SavedModel or HDF5 file.
save_own_variables(store)Saves the state of the layer.
save_spec([dynamic_batch])Returns the tf.TensorSpec of call args as a tuple (args, kwargs).
save_weights(filepath[, overwrite, ...])Saves all layer weights.
set_weights(weights)Sets the weights of the layer, from NumPy arrays.
summary([line_length, positions, print_fn, ...])Prints a string summary of the network.
test_on_batch(x[, y, sample_weight, ...])Test the model on a single batch of samples.
test_step(data)The logic for one evaluation step.
to_json(**kwargs)Returns a JSON string containing the network configuration.
to_yaml(**kwargs)Returns a yaml string containing the network configuration.
train(training_data[, validation_data, ...])train_on_batch(x[, y, sample_weight, ...])Runs a single gradient update on a single batch of data.
train_step(data)The logic for one training step.
with_name_scope(method)Decorator to automatically enter the module name scope.
Attributes
activity_regularizerOptional regularizer function for the output of this layer.
autotune_steps_per_executionSettable property to enable tuning for steps_per_execution
compute_dtypeThe dtype of the layer's computations.
distribute_reduction_methodThe method employed to reduce per-replica values during training.
distribute_strategyThe tf.distribute.Strategy this model was created under.
dtypeThe dtype of the layer weights.
dtype_policyThe dtype policy associated with this layer.
dynamicWhether the layer is dynamic (eager-only); set in the constructor.
inbound_nodesReturn Functional API nodes upstream of this layer.
inputRetrieves the input tensor(s) of a layer.
input_maskRetrieves the input mask tensor(s) of a layer.
input_shapeRetrieves the input shape(s) of a layer.
input_specInputSpec instance(s) describing the input format for this layer.
jit_compileSpecify whether to compile the model with XLA.
layerslossesList of losses added using the add_loss() API.
metricsReturn metrics added using compile() or add_metric().
metrics_namesReturns the model's display labels for all outputs.
nameName of the layer (string), set in the constructor.
name_scopeReturns a tf.name_scope instance for this class.
non_trainable_variablesSequence of non-trainable variables owned by this module and its submodules.
non_trainable_weightsList of all non-trainable weights tracked by this layer.
outbound_nodesReturn Functional API nodes downstream of this layer.
outputRetrieves the output tensor(s) of a layer.
output_maskRetrieves the output mask tensor(s) of a layer.
output_shapeRetrieves the output shape(s) of a layer.
run_eagerlySettable attribute indicating whether the model should run eagerly.
state_updatesDeprecated, do NOT use!
statefulsteps_per_executionSettable `steps_per_execution variable. Requires a compiled model.
submodulesSequence of all sub-modules.
supports_maskingWhether this layer supports computing a mask using compute_mask.
trainabletrainable_variablesSequence of trainable variables owned by this module and its submodules.
trainable_weightsList of all trainable weights tracked by this layer.
updatesvariable_dtypeAlias of Layer.dtype, the dtype of the weights.
variablesReturns the list of all layer variables/weights.
weightsReturns the list of all layer variables/weights.