lin_alg.h File Reference

Linear algebra functions. More...

#include "matpackI.h"

Include dependency graph for lin_alg.h:

This graph shows which files directly or indirectly include this file:

Go to the source code of this file.

Functions

void ludcmp (MatrixView LU, ArrayOfIndex &indx, ConstMatrixView A)
 LU decomposition.
void lubacksub (VectorView x, ConstMatrixView LU, ConstVectorView b, const ArrayOfIndex &indx)
 LU backsubstitution.
void matrix_exp (MatrixView F, ConstMatrixView A, const Index &q)
 Exponential of a Matrix.
Numeric norm_inf (ConstMatrixView A)
 Maximum absolute row sum norm.
void id_mat (MatrixView I)
 Identity Matrix.


Detailed Description

Linear algebra functions.

Author:
Claudia Emde <claudia.emde@dlr.de>
Date:
Thu May 2 14:34:05 2002

Definition in file lin_alg.h.


Function Documentation

void id_mat ( MatrixView  I  ) 

Identity Matrix.

Parameters:
I Output: identity matrix

Definition at line 298 of file lin_alg.cc.

References ConstMatrixView::ncols(), and ConstMatrixView::nrows().

Referenced by include_cumtrans_in_diy_dq(), matrix_exp(), MCGeneral(), MCIPA(), mcPathTrace(), mcPathTraceGeneral(), mcPathTraceIPA(), and rte_step_std().

void lubacksub ( VectorView  x,
ConstMatrixView  LU,
ConstVectorView  b,
const ArrayOfIndex indx 
)

LU backsubstitution.

Solves a set of linear equations Ax=b. It is neccessairy to do a LU decomposition using the function ludcp before using this function.

Parameters:
x Output: Solution vector of the equation system.
LU Input: LU decomposition of the matrix (output of function ludcp).
b Input: Right-hand-side vector of equation system.
indx Input: Pivoting information (output of function ludcp).

Definition at line 144 of file lin_alg.cc.

References is_size(), and ConstMatrixView::nrows().

Referenced by matrix_exp(), rte_step_std(), test_lusolve1D(), and test_lusolve4D().

void ludcmp ( MatrixView  LU,
ArrayOfIndex indx,
ConstMatrixView  A 
)

LU decomposition.

This function performes a LU Decomposition of the matrix A. (Compare Numerical Recipies in C, pages 36-48.)

Parameters:
LU Output: returns L and U in one matrix
indx Output: Vector that records the row permutation.
A Input: Matrix for which the LU decomposition is performed

Definition at line 53 of file lin_alg.cc.

References abs, is_size(), ConstMatrixView::nrows(), and temp.

Referenced by matrix_exp(), rte_step_std(), test_lusolve1D(), and test_lusolve4D().

void matrix_exp ( MatrixView  F,
ConstMatrixView  A,
const Index q 
)

Exponential of a Matrix.

The exponential of a matrix is computed using the Pade-Approximation. The method is decribed in: Golub, G. H. and C. F. Van Loan, Matrix Computation, p. 384, Johns Hopkins University Press, 1983.

Parameters:
F Output: The matrix exponential of A (Has to be initialized before calling the function.
A Input: arbitrary square matrix
q Input: Parameter for the accuracy of the computation

Definition at line 193 of file lin_alg.cc.

References id_mat(), is_size(), joker, lubacksub(), ludcmp(), mult(), N, ConstMatrixView::ncols(), and norm_inf().

Referenced by rte_step_std(), test_matrix_exp1D(), test_matrix_exp3D(), and test_matrix_exp4D().

Numeric norm_inf ( ConstMatrixView  A  ) 

Maximum absolute row sum norm.

This function returns the maximum absolute row sum norm of a matrix A (see user guide for the definition).

Parameters:
A Input: arbitrary matrix
Returns:
Maximum absolute row sum norm

Definition at line 275 of file lin_alg.cc.

References abs, ConstMatrixView::ncols(), norm_inf(), and ConstMatrixView::nrows().

Referenced by matrix_exp(), and norm_inf().


Generated on Mon Mar 23 14:06:37 2009 for ARTS by  doxygen 1.5.6