legendre.h File Reference

Contains the code to calculate Legendre polynomials. More...

#include "arts.h"
#include "matpackI.h"

Include dependency graph for legendre.h:

This graph shows which files directly or indirectly include this file:

Go to the source code of this file.

Functions

Numeric legendre_poly (Index l, Index m, Numeric x)
 legendre_poly
Numeric legendre_poly_norm_schmidt (Index l, Index m, Numeric x)
 legendre_poly_norm_schmidt
Numeric legendre_poly_deriv (Index l, Index m, Numeric x)
 legendre_poly_deriv
Numeric legendre_poly_norm_schmidt_deriv (Index l, Index m, Numeric x)
 legendre_poly_norm_schmidt_deriv
Numeric g_legendre_poly (Index l, Index m, Numeric x)
 g_legendre_poly
Numeric g_legendre_poly_norm_schmidt (Index l, Index m, Numeric x)
 g_legendre_poly_norm_schmidt
Numeric g_legendre_poly_deriv (Index l, Index m, Numeric x)
 g_legendre_poly_deriv
Numeric g_legendre_poly_norm_schmidt_deriv (Index l, Index m, Numeric x)
 g_legendre_poly_norm_schmidt_deriv
Numeric g_legendre_poly_norm_schmidt_deriv1 (Index l, Index m, Numeric x)
 g_legendre_poly_norm_schmidt_deriv1
Numeric g_legendre_poly_norm_schmidt_deriv2 (Index l, Index m, Numeric x)
 g_legendre_poly_norm_schmidt_deriv2
Numeric g_legendre_poly_norm_schmidt_deriv3 (Index l, Index m, Numeric x)
 g_legendre_poly_norm_schmidt_deriv3
Numeric g_legendre_poly_norm_schmidt_deriv4 (Index l, Index m, Numeric x)
 g_legendre_poly_norm_schmidt_deriv4


Detailed Description

Contains the code to calculate Legendre polynomials.

Author:
Oliver Lemke
Date:
2003-08-14

Definition in file legendre.h.


Function Documentation

Numeric g_legendre_poly ( Index  l,
Index  m,
Numeric  x 
)

g_legendre_poly

Returns the associated Legendre polynomial Plm(x) without the factor (-1)^m.

The input parameters must fulfill the following conditions: 0 <= m <= l and |x| <= 1

The code is based on the Numerical recipes. Results were compared to the Legendre calculations from the GNU Scientific library and found to be identical.

Returns:
Plm
Parameters:
l Index
m Index
x Value
Author:
Nikolay Koulev
Date:
2003-09-02

Definition at line 349 of file legendre.cc.

References abs, and ll.

Referenced by g_legendre_poly_deriv(), g_legendre_poly_norm_schmidt(), g_legendre_poly_norm_schmidt_deriv(), g_legendre_poly_norm_schmidt_deriv1(), g_legendre_poly_norm_schmidt_deriv2(), g_legendre_poly_norm_schmidt_deriv3(), and g_legendre_poly_norm_schmidt_deriv4().

Numeric g_legendre_poly_deriv ( Index  l,
Index  m,
Numeric  x 
)

g_legendre_poly_deriv

Returns the derivative of the associated Legendre polynomial Plm(x)) without the factor (-1)^m..

The input parameters must fulfill the following conditions: 0 <= m <= l and |x| < 1

Returns:
dPlm
Parameters:
l Index
m Index
x Value
Author:
Nikolay Koulev
Date:
2003-09-02

Definition at line 458 of file legendre.cc.

References g_legendre_poly().

Numeric g_legendre_poly_norm_schmidt ( Index  l,
Index  m,
Numeric  x 
)

g_legendre_poly_norm_schmidt

Returns the Schmidt quasi-normalized associated Legendre polynomial Plm(x)) without the factor (-1)^m..

The input parameters must fulfill the following conditions: 0 <= m <= l and |x| <= 1

The code is based on the Numerical recipes. Results were compared to the Legendre calculations from the GNU Scientific library and found to be identical.

Returns:
Plm
Parameters:
l Index
m Index
x Value
Author:
Nikolay koulev
Date:
2003-09-02

Definition at line 421 of file legendre.cc.

References fac(), and g_legendre_poly().

Referenced by g_legendre_poly_norm_schmidt_deriv2(), and magfield_nk().

Numeric g_legendre_poly_norm_schmidt_deriv ( Index  l,
Index  m,
Numeric  x 
)

g_legendre_poly_norm_schmidt_deriv

Returns the derivative of the Schmidt quasi-normalized associated Legendre polynomial Plm(x)) without the factor (-1)^m.

The input parameters must fulfill the following conditions: 0 <= m <= l and |x| < 1

Returns:
dPlm
Parameters:
l Index
m Index
x Value
Author:
Nikolay Koulev
Date:
2003-09-02

Definition at line 543 of file legendre.cc.

References fac(), and g_legendre_poly().

Numeric g_legendre_poly_norm_schmidt_deriv1 ( Index  l,
Index  m,
Numeric  x 
)

g_legendre_poly_norm_schmidt_deriv1

Returns the derivative of the Schmidt quasi-normalized associated Legendre polynomial Plm(x)) without the factor (-1)^m. Utilizes the simplest recurrence scheme.

The input parameters must fulfill the following conditions: 0 <= m <= l and |x| < 1

Returns:
dPlm
Parameters:
l Index
m Index
x Value
Author:
Nikolay Koulev
Date:
2003-09-02

Definition at line 632 of file legendre.cc.

References fac(), and g_legendre_poly().

Numeric g_legendre_poly_norm_schmidt_deriv2 ( Index  l,
Index  m,
Numeric  x 
)

g_legendre_poly_norm_schmidt_deriv2

Returns the derivative of the Schmidt quasi-normalized associated Legendre polynomial Plm(x)) without the factor (-1)^m.

The input parameters must fulfill the following conditions: 0 <= m <= l and |x| < 1

Returns:
dPlm
Parameters:
l Index
m Index
x Value
Author:
Nikolay Koulev
Date:
2003-09-02

Definition at line 724 of file legendre.cc.

References fac(), g_legendre_poly(), and g_legendre_poly_norm_schmidt().

Numeric g_legendre_poly_norm_schmidt_deriv3 ( Index  l,
Index  m,
Numeric  x 
)

g_legendre_poly_norm_schmidt_deriv3

Returns the derivative of the Schmidt quasi-normalized associated Legendre polynomial Plm(x)) without the factor (-1)^m.

The input parameters must fulfill the following conditions: 0 <= m <= l and |x| < 1

Returns:
dPlm
Parameters:
l Index
m Index
x Value
Author:
Nikolay Koulev
Date:
2003-09-02

Definition at line 812 of file legendre.cc.

References fac(), and g_legendre_poly().

Referenced by magfield_nk().

Numeric g_legendre_poly_norm_schmidt_deriv4 ( Index  l,
Index  m,
Numeric  x 
)

g_legendre_poly_norm_schmidt_deriv4

Returns the derivative of the Schmidt quasi-normalized associated Legendre polynomial Plm(x)) without the factor (-1)^m.

The input parameters must fulfill the following conditions: 0 <= m <= l and |x| < 1

Returns:
dPlm
Parameters:
l Index
m Index
x Value
Author:
Nikolay Koulev
Date:
2003-09-02

Definition at line 900 of file legendre.cc.

References fac(), and g_legendre_poly().

Numeric legendre_poly ( Index  l,
Index  m,
Numeric  x 
)

legendre_poly

Returns the associated Legendre polynomial Plm(x).

The input parameters must fulfill the following conditions: 0 <= m <= l and |x| <= 1

The code is based on the Numerical recipes. Results were compared to the Legendre calculations from the GNU Scientific library and found to be identical.

Returns:
Plm
Parameters:
l Index
m Index
x Value
Author:
Oliver Lemke
Date:
2003-08-14

Definition at line 66 of file legendre.cc.

References abs, and ll.

Referenced by legendre_poly_deriv(), legendre_poly_norm_schmidt(), and main().

Numeric legendre_poly_deriv ( Index  l,
Index  m,
Numeric  x 
)

legendre_poly_deriv

Returns the derivative of the associated Legendre polynomial Plm(x).

The input parameters must fulfill the following conditions: 0 <= m <= l and |x| < 1

Returns:
dPlm
Parameters:
l Index
m Index
x Value
Author:
Oliver Lemke
Date:
2003-08-18

Definition at line 173 of file legendre.cc.

References legendre_poly().

Referenced by main().

Numeric legendre_poly_norm_schmidt ( Index  l,
Index  m,
Numeric  x 
)

legendre_poly_norm_schmidt

Returns the Schmidt quasi-normalized associated Legendre polynomial Plm(x).

The input parameters must fulfill the following conditions: 0 <= m <= l and |x| <= 1

The code is based on the Numerical recipes. Results were compared to the Legendre calculations from the GNU Scientific library and found to be identical.

Returns:
Plm
Parameters:
l Index
m Index
x Value
Author:
Oliver Lemke
Date:
2003-08-15

Definition at line 137 of file legendre.cc.

References fac(), and legendre_poly().

Referenced by legendre_poly_norm_schmidt_deriv(), and main().

Numeric legendre_poly_norm_schmidt_deriv ( Index  l,
Index  m,
Numeric  x 
)

legendre_poly_norm_schmidt_deriv

Returns the derivative of the Schmidt quasi-normalized associated Legendre polynomial Plm(x).

The input parameters must fulfill the following conditions: 0 <= m <= l and |x| < 1

Returns:
dPlm
Parameters:
l Index
m Index
x Value
Author:
Nikolay Koulev
Date:
2003-08-18

Definition at line 257 of file legendre.cc.

References fac(), and legendre_poly_norm_schmidt().

Referenced by main().


Generated on Mon Mar 23 14:06:37 2009 for ARTS by  doxygen 1.5.6