# Numbers after equals is what WIGXJPF produce on x86 (with double) # Numbers after hash (#) sign are numbers from the articles mentioned # Numbers after double hash are evaluated from articles with exact results (integer ratios) # Numbers after triple hash are from Clebsch-o-Matic (http://personal.ph.surrey.ac.uk/~phs3ps/cleb.html) # A.J. Stone & C.P. Wood, Computer Physics Communications 21 (1980) 195-205 3j( 1.5 1.5 1.0 1.5 -0.5 -1.0) = -0.316227766016838 # ## -0.3162277660168379331998894 3j( 1.0 2.0 4.0 1.0 -2.0 1.0) = trivially 0 3j( 1.0 2.0 1.0 1.0 1.0 -2.0) = trivially 0 3j( 1.0 2.0 3.0 0.5 -0.5 0.0) = trivially 0 6j( 2.0 2.0 1.0 2.0 1.0 1.0) = -0.100000000000000 # ## -0.1 6j( 1.0 1.0 0.0 2.0 2.0 1.0) = 0.258198889747161 # ## 0.2581988897471611256786177 6j( 1.0 1.0 1.0 2.0 2.0 1.0) = -0.223606797749979 # ## -0.2236067977499789696409174 6j( 1.0 1.0 2.0 2.0 2.0 1.0) = 0.152752523165195 # ## 0.1527525231651946668862682 6j( 1.0 1.0 0.0 2.0 2.0 2.0) = -0.258198889747161 # ### -0.2581988897471611256786177 6j( 1.0 1.0 0.0 2.0 2.0 1.0) = 0.258198889747161 # ### 0.2581988897471611256786177 6j( 1.0 1.0 1.0 2.0 2.0 2.0) = 0.0745355992499930 # ### 0.07453559924999298988030579 6j( 1.0 1.0 1.0 2.0 2.0 1.0) = -0.223606797749979 # ### -0.2236067977499789696409174 6j( 1.0 1.0 2.0 2.0 2.0 2.0) = 0.152752523165195 # ### 0.1527525231651946668862682 6j( 1.0 1.0 2.0 2.0 2.0 1.0) = 0.152752523165195 # ### 0.1527525231651946668862682 9j( 1.0 2.0 3.0 1.0 2.0 3.0 0.0 2.0 2.0) = 0.0361403161162100 # ## 0.03614031611621004950855878 9j( 0.5 1.5 2.0 1.5 0.5 2.0 1.0 1.0 0.0) = 0.0645497224367903 # ## 0.06454972243679028141965442 9j( 1.0 2.0 3.0 3.0 2.0 4.0 2.0 3.0 5.0) = -0.00141609931936472 # ### -0.001416099319364716146450543 9j( 1.0 2.0 3.0 3.0 2.0 4.0 2.0 4.0 5.0) = 0.00793146728313409 # ### 0.007931467283134090809281056 9j( 1.0 2.0 3.0 3.0 2.0 4.0 3.0 2.0 5.0) = 0.00759958641837765 # * this should be ...766, and is that with long double # ### 0.007599586418377655058440231 9j( 1.0 2.0 3.0 3.0 2.0 4.0 3.0 3.0 5.0) = 0.00851133416822978 # ### 0.008511334168229784383842898 9j( 1.0 2.0 3.0 3.0 2.0 4.0 4.0 1.0 5.0) = 0.0108588135723727 # ### 0.01085881357237274265843856 9j( 1.0 2.0 3.0 3.0 2.0 4.0 4.0 2.0 5.0) = 0.00335110262166189 # ### 0.003351102621661889523050849 9j( 1.0 2.0 3.0 3.0 2.0 4.0 4.0 3.0 5.0) = -0.00503010511994540 # ### -0.005030105119945403082768090 9j( 1.0 2.0 3.0 3.0 2.0 4.0 4.0 4.0 5.0) = 0.000122462976160390 # ### 0.0001224629761603904049691226 9j( 1.0 2.0 3.0 2.0 3.0 4.0 3.0 4.0 5.0) = -0.000922146636432351 # ## -0.0009221466364323507180650038 # P.D. Stevenson, Computer Physics Communications 147 (2002) 853-858 3j( 1.0 1.0 1.0 1.0 0.0 -1.0) = -0.408248290463863 # ## -0.4082482904638630163662140 3j( 3.0 3.0 3.0 -1.0 -1.0 2.0) = 0 # ## 0 3j( 3.5 2.5 2.0 3.5 -1.5 -2.0) = -0.235702260395516 # ## -0.2357022603955158414669481 3j( 7.5 7.5 0.0 1.5 -1.5 0.0) = 0.250000000000000 # ## 0.25 3j( 8.0 5.5 4.5 2.0 -3.5 1.5) = -0.120622637445762 # ## -0.1206226374457620121684766 3j( 8.0 7.0 6.0 3.0 0.0 -3.0) = 0 # ## 0 # L. Wei, Computer Physics Communications 120 (1999) 222-230 3j( 15.0 30.0 40.0 2.0 2.0 -4.0) = -0.0190815797991916 3j( 30.0 30.0 30.0 0.0 15.0 -15.0) = -0.0152857154897839 3j( 143.0 100.0 60.0 -10.0 60.0 -50.0) = 4.16710792865494e-10 3j( 160.0 100.0 60.0 -10.0 60.0 -50.0) = 3.81124616116626e-21 # #...261 3j( 200.0 200.0 200.0 -10.0 60.0 -50.0) = 0.000749392731398951 # #...510 # P.D. Stevenson, Computer Physics Communications 147 (2002) 853-858 3j( 70.0 75.0 80.0 20.0 -40.0 20.0) = -0.00845794815539587 # ## -0.008457948155395870148375125 # P.D. Stevenson, Computer Physics Communications 147 (2002) 853-858 6j( 2.0 2.0 1.0 2.0 1.0 2.0) = 0.152752523165195 # ## 0.1527525231651946668862682 6j( 3.5 3.0 1.5 1.0 1.5 3.0) = 0 # ## 0 6j( 4.0 4.0 1.0 4.0 3.0 1.0) = -0.0277777777777778 # ## 0.02777777777777777777777778 6j( 6.0 6.0 4.0 4.5 3.5 5.5) = 0.0378232878232878 # ## 0.03782328782328782328782329 6j( 6.5 6.0 1.5 3.0 3.5 6.0) = 0 # ## 0 6j( 8.0 8.0 8.0 8.0 7.0 7.0) = 0.0202215952935690 # ## 0.02022159529356900520973875 # L. Wei, Computer Physics Communications 120 (1999) 222-230 6j( 8.0 8.0 8.0 8.0 8.0 8.0) = -0.0126520807231535 6j( 20.0 20.0 20.0 20.0 20.0 20.0) = -0.00502940645686796 # #...958 6j( 128.0 120.0 72.0 112.0 48.0 80.0) = 1.19377022891155e-17 6j( 230.0 80.0 150.0 190.0 230.0 120.0) = 2.42701001304468e-24 6j( 200.0 200.0 200.0 200.0 200.0 200.0) = 0.000155903212413242 # P.D. Stevenson, Computer Physics Communications 147 (2002) 853-858 6j( 80.0 70.0 60.0 60.0 70.0 80.0) = 0.000271672365647525 # ## 0.0002716723656475249151219590 # P.D. Stevenson, Computer Physics Communications 147 (2002) 853-858 9j( 1.0 3.0 2.0 1.5 2.5 2.0 0.5 0.5 0.0) = -0.0281718084909506 # ### 0.02817180849095055258365394 * 9j( 3.0 4.0 2.0 3.5 3.5 2.0 0.5 0.5 1.0) = 0.0230021853114118 # ## 0.02300218531141180725987090 9j( 1.0 3.0 4.0 0.5 3.5 3.0 0.5 0.5 1.0) = -0.00595238095238095 # ## 0.005952380952380952380952381 9j( 3.0 3.5 3.5 2.5 3.0 3.5 0.5 0.5 1.0) = -0.00215400852516591 # ## 0.002154008525165910378637861 # * The article has a typo: it says 1/6*\sqrt(1/5), should be 1/6*\sqrt(1/35) # L. Wei, Computer Physics Communications 120 (1999) 222-230 9j( 8.5 9.5 7.0 12.5 8.0 8.5 8.0 10.5 9.5) = 0.000281298301912545 # #...449 9j( 15.0 15.0 15.0 15.0 3.0 15.0 15.0 18.0 10.0) = -7.78324615309539e-05 9j( 45.0 30.0 20.0 45.0 15.0 35.0 90.0 45.0 45.0) = -6.51130967998823e-07 9j( 60.0 70.0 130.0 50.0 70.0 120.0 60.0 50.0 40.0) = 5.35253924139905e-16 # #...055 9j( 100.0 80.0 50.0 50.0 100.0 70.0 60.0 50.0 100.0) = 1.05597798065761e-07 # #...80687422 # ### 1.0559779806576116E-7 # Liqiang Wei, Computers in Physics 12, 632 (1998) 9j( 5.0 0.5 4.5 5.0 0.5 5.5 9.0 1.0 10.0) = 0.00257786760370727 9j( 15.0 15.0 30.0 15.0 3.0 15.0 15.0 18.0 30.0) = 0.000168384777511567 # #...667 # ### 0.00016838477751156684 9j( 20.0 10.0 30.0 30.0 30.0 60.0 10.0 20.0 30.0) = 0.000268744961031981 # #...806 9j( 30.0 20.0 10.0 30.0 10.0 20.0 60.0 30.0 30.0) = 0.000268744961031981 # #...805 # ### 2.687449610319806E-4 9j( 45.0 30.0 20.0 45.0 15.0 35.0 90.0 45.0 45.0) = -6.51130967998823e-07 # #...88233 # ### -6.51130967998823E-7 9j( 50.0 51.0 52.0 53.0 54.0 55.0 56.0 57.0 58.0) = 4.18840599233205e-06 # #...05995640161 # ### 4.188405992332049E-6 9j( 74.0 67.0 60.0 82.0 60.0 70.0 10.0 20.0 30.0) = 4.94488048916531e-06 # #...89166103 # ### 4.944880489165311E-6 9j( 84.0 90.0 61.0 60.0 64.0 40.0 52.0 40.0 30.0) = -7.94917060961424e-08 # #...609758397 # ### 7.949170609614244E-8 9j( 94.0 67.0 86.0 61.0 73.0 52.0 70.0 60.0 80.0) = -1.86808574631986e-07 # #...85731967426 # ### -1.868085746319857E-7 9j( 60.0 70.0 115.0 50.0 70.0 110.0 60.0 50.0 40.0) = -1.36799650122649e-06 # #...501186793 # ### 1.3679965012264875E-6 9j( 100.0 80.0 50.0 50.0 100.0 70.0 60.0 50.0 100.0) = 1.05597798065761e-07 # #...77979475188 # ### 1.0559779806576116E-7 9j( 20.0 20.0 40.0 20.0 20.0 40.0 20.0 20.0 40.0) = 0.000111633558388972 # ## 0.0001116335583889716886181639