UNet
- class typhon.retrieval.qrnn.models.pytorch.UNet(input_features, quantiles, n_features=32, n_levels=4, skip_connection=None)[source]
Pytorch implementation of the UNet architecture for image segmentation.
- __init__(input_features, quantiles, n_features=32, n_levels=4, skip_connection=None)[source]
- Parameters:
input_features (
int
) – The number of channels of the input image.quantiles (
np.array
) – Array containing the quantiles to predict.n_features – The number of channels of the first convolution block.
n_level – The number of down-sampling steps.
skip_connection – Whether or not to include skip connections in each block.
Methods
__init__
(input_features, quantiles[, ...])- param input_features:
The number of channels of the input image.
add_module
(name, module)Add a child module to the current module.
apply
(fn)Apply
fn
recursively to every submodule (as returned by.children()
) as well as self.bfloat16
()Casts all floating point parameters and buffers to
bfloat16
datatype.buffers
([recurse])Return an iterator over module buffers.
calibration
(data[, gpu])Computes the calibration of the predictions from the neural network.
children
()Return an iterator over immediate children modules.
compile
(*args, **kwargs)Compile this Module's forward using
torch.compile()
.cpu
()Move all model parameters and buffers to the CPU.
cuda
([device])Move all model parameters and buffers to the GPU.
double
()Casts all floating point parameters and buffers to
double
datatype.eval
()Set the module in evaluation mode.
Set the extra representation of the module.
float
()Casts all floating point parameters and buffers to
float
datatype.forward
(x)Propagate input through layer.
get_buffer
(target)Return the buffer given by
target
if it exists, otherwise throw an error.Return any extra state to include in the module's state_dict.
get_parameter
(target)Return the parameter given by
target
if it exists, otherwise throw an error.get_submodule
(target)Return the submodule given by
target
if it exists, otherwise throw an error.half
()Casts all floating point parameters and buffers to
half
datatype.ipu
([device])Move all model parameters and buffers to the IPU.
load
(self, path)Load QRNN from file.
load_state_dict
(state_dict[, strict, assign])Copy parameters and buffers from
state_dict
into this module and its descendants.modules
()Return an iterator over all modules in the network.
named_buffers
([prefix, recurse, ...])Return an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself.
Return an iterator over immediate children modules, yielding both the name of the module as well as the module itself.
named_modules
([memo, prefix, remove_duplicate])Return an iterator over all modules in the network, yielding both the name of the module as well as the module itself.
named_parameters
([prefix, recurse, ...])Return an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself.
parameters
([recurse])Return an iterator over module parameters.
predict
(x[, gpu])register_backward_hook
(hook)Register a backward hook on the module.
register_buffer
(name, tensor[, persistent])Add a buffer to the module.
register_forward_hook
(hook, *[, prepend, ...])Register a forward hook on the module.
register_forward_pre_hook
(hook, *[, ...])Register a forward pre-hook on the module.
register_full_backward_hook
(hook[, prepend])Register a backward hook on the module.
register_full_backward_pre_hook
(hook[, prepend])Register a backward pre-hook on the module.
Register a post hook to be run after module's
load_state_dict
is called.register_module
(name, module)Alias for
add_module()
.register_parameter
(name, param)Add a parameter to the module.
Register a pre-hook for the
state_dict()
method.requires_grad_
([requires_grad])Change if autograd should record operations on parameters in this module.
reset
()Reinitializes the weights of a model.
save
(path)Save QRNN to file.
set_extra_state
(state)Set extra state contained in the loaded state_dict.
See
torch.Tensor.share_memory_()
.state_dict
(*args[, destination, prefix, ...])Return a dictionary containing references to the whole state of the module.
to
(*args, **kwargs)Move and/or cast the parameters and buffers.
to_empty
(*, device[, recurse])Move the parameters and buffers to the specified device without copying storage.
train
(*args, **kwargs)Train the network.
type
(dst_type)Casts all parameters and buffers to
dst_type
.xpu
([device])Move all model parameters and buffers to the XPU.
zero_grad
([set_to_none])Reset gradients of all model parameters.
Attributes
T_destination
call_super_init
dump_patches
training