UNet
- class typhon.retrieval.qrnn.models.pytorch.UNet(input_features, quantiles, n_features=32, n_levels=4, skip_connection=None)[source]
Pytorch implementation of the UNet architecture for image segmentation.
- __init__(input_features, quantiles, n_features=32, n_levels=4, skip_connection=None)[source]
- Parameters:
input_features (
int
) – The number of channels of the input image.quantiles (
np.array
) – Array containing the quantiles to predict.n_features – The number of channels of the first convolution block.
n_level – The number of down-sampling steps.
skip_connection – Whether or not to include skip connections in each block.
Methods
__init__
(input_features, quantiles[, ...])- param input_features:
The number of channels of the input image.
add_module
(name, module)Adds a child module to the current module.
apply
(fn)Applies
fn
recursively to every submodule (as returned by.children()
) as well as self.bfloat16
()Casts all floating point parameters and buffers to
bfloat16
datatype.buffers
([recurse])Returns an iterator over module buffers.
calibration
(data[, gpu])Computes the calibration of the predictions from the neural network.
children
()Returns an iterator over immediate children modules.
compile
(*args, **kwargs)Compile this Module's forward using
torch.compile()
.cpu
()Moves all model parameters and buffers to the CPU.
cuda
([device])Moves all model parameters and buffers to the GPU.
double
()Casts all floating point parameters and buffers to
double
datatype.eval
()Sets the module in evaluation mode.
Set the extra representation of the module
float
()Casts all floating point parameters and buffers to
float
datatype.forward
(x)Propagate input through layer.
get_buffer
(target)Returns the buffer given by
target
if it exists, otherwise throws an error.Returns any extra state to include in the module's state_dict.
get_parameter
(target)Returns the parameter given by
target
if it exists, otherwise throws an error.get_submodule
(target)Returns the submodule given by
target
if it exists, otherwise throws an error.half
()Casts all floating point parameters and buffers to
half
datatype.ipu
([device])Moves all model parameters and buffers to the IPU.
load
(self, path)Load QRNN from file.
load_state_dict
(state_dict[, strict, assign])Copies parameters and buffers from
state_dict
into this module and its descendants.modules
()Returns an iterator over all modules in the network.
named_buffers
([prefix, recurse, ...])Returns an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself.
Returns an iterator over immediate children modules, yielding both the name of the module as well as the module itself.
named_modules
([memo, prefix, remove_duplicate])Returns an iterator over all modules in the network, yielding both the name of the module as well as the module itself.
named_parameters
([prefix, recurse, ...])Returns an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself.
parameters
([recurse])Returns an iterator over module parameters.
predict
(x[, gpu])register_backward_hook
(hook)Registers a backward hook on the module.
register_buffer
(name, tensor[, persistent])Adds a buffer to the module.
register_forward_hook
(hook, *[, prepend, ...])Registers a forward hook on the module.
register_forward_pre_hook
(hook, *[, ...])Registers a forward pre-hook on the module.
register_full_backward_hook
(hook[, prepend])Registers a backward hook on the module.
register_full_backward_pre_hook
(hook[, prepend])Registers a backward pre-hook on the module.
Registers a post hook to be run after module's
load_state_dict
is called.register_module
(name, module)Alias for
add_module()
.register_parameter
(name, param)Adds a parameter to the module.
These hooks will be called with arguments:
self
,prefix
, andkeep_vars
before callingstate_dict
onself
.requires_grad_
([requires_grad])Change if autograd should record operations on parameters in this module.
reset
()Reinitializes the weights of a model.
save
(path)Save QRNN to file.
set_extra_state
(state)This function is called from
load_state_dict()
to handle any extra state found within the state_dict.See
torch.Tensor.share_memory_()
state_dict
(*args[, destination, prefix, ...])Returns a dictionary containing references to the whole state of the module.
to
(*args, **kwargs)Moves and/or casts the parameters and buffers.
to_empty
(*, device[, recurse])Moves the parameters and buffers to the specified device without copying storage.
train
(*args, **kwargs)Train the network.
type
(dst_type)Casts all parameters and buffers to
dst_type
.xpu
([device])Moves all model parameters and buffers to the XPU.
zero_grad
([set_to_none])Resets gradients of all model parameters.
Attributes
T_destination
call_super_init
dump_patches
training