broadcast_like
- UnitsAwareDataArray.broadcast_like(other: T_DataArrayOrSet, *, exclude: Iterable[Hashable] | None = None) Self
Broadcast this DataArray against another Dataset or DataArray.
This is equivalent to xr.broadcast(other, self)[1]
xarray objects are broadcast against each other in arithmetic operations, so this method is not be necessary for most uses.
If no change is needed, the input data is returned to the output without being copied.
If new coords are added by the broadcast, their values are NaN filled.
- Parameters:
other (Dataset or DataArray) – Object against which to broadcast this array.
exclude (iterable of Hashable, optional) – Dimensions that must not be broadcasted
- Returns:
new_da – The caller broadcasted against
other
.- Return type:
DataArray
Examples
>>> arr1 = xr.DataArray( ... np.random.randn(2, 3), ... dims=("x", "y"), ... coords={"x": ["a", "b"], "y": ["a", "b", "c"]}, ... ) >>> arr2 = xr.DataArray( ... np.random.randn(3, 2), ... dims=("x", "y"), ... coords={"x": ["a", "b", "c"], "y": ["a", "b"]}, ... ) >>> arr1 <xarray.DataArray (x: 2, y: 3)> Size: 48B array([[ 1.76405235, 0.40015721, 0.97873798], [ 2.2408932 , 1.86755799, -0.97727788]]) Coordinates: * x (x) <U1 8B 'a' 'b' * y (y) <U1 12B 'a' 'b' 'c' >>> arr2 <xarray.DataArray (x: 3, y: 2)> Size: 48B array([[ 0.95008842, -0.15135721], [-0.10321885, 0.4105985 ], [ 0.14404357, 1.45427351]]) Coordinates: * x (x) <U1 12B 'a' 'b' 'c' * y (y) <U1 8B 'a' 'b' >>> arr1.broadcast_like(arr2) <xarray.DataArray (x: 3, y: 3)> Size: 72B array([[ 1.76405235, 0.40015721, 0.97873798], [ 2.2408932 , 1.86755799, -0.97727788], [ nan, nan, nan]]) Coordinates: * x (x) <U1 12B 'a' 'b' 'c' * y (y) <U1 12B 'a' 'b' 'c'