
ARTS User Guide

edited by

Patrick Eriksson1 and Stefan Bühler2

March 23, 2009
ARTS Version 1.11.50

The content and usage of ARTS are not only described by this document. An overview
of ARTS documentation and help features are given in Section 1.2. For continuous
reports on changes of the source code and this user guide, subscribe to the ARTS
developers mailing list at http://www.sat.ltu.se/arts/support/.

We welcome gladly comments and reports on errors in the document. Send then
an e-mail to: patrick (at) rss.chalmers.se or sbuehler (at) ltu.se.

If you use data generated by ARTS in a scientific publication, then please mention
this and cite the most appropriate of the ARTS publications that are summarized on
http://www.sat.ltu.se/arts/docs/.

1Department of Radio and Space Science, Chalmers University of Technology, SE-41296 Göteborg, Sweden
2Department of Space Science, Luleå University of Technology, Box 812, SE-98128 Kiruna, Sweden

http://www.sat.ltu.se/arts/support/
http://www.sat.ltu.se/arts/docs/

Copyright (C) 2000-2008
Stefan Buehler <sbuehler (at) ltu.se>
Patrick Eriksson <patrick (at) rss.chalmers.se>

The ARTS program is free software; you can redistribute it
and/or modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either
version 2, or (at your option) any later version.

This program is distributed in the hope that it will be
useful, but WITHOUT ANY WARRANTY; without even the implied
warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more
details.

You should have received a copy of the GNU General Public
License along with the program; if not, write to the Free
Software Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA.

Contributing authors

Author/email Main contribution(s)
Stefan Bühlerd Editor, Sections 2, 6, 15, 16, 17 and 18.
sbuehler (at) ltu.se
Cory Davisc Section 14.
cory (at) met.ed.ac.uk
Mattias Ekströmb Section 10, 17.6.
ekstrom (at) rss.chalmers.se
Claudia Emdea Sections 5.1, 12, 13, 20 and 21.
claudia.emde (at) dlr.de
Patrick Erikssonb Editor, report structure, Sections 3, 4, 7,
Patrick.Eriksson (at) rss.chalmers.se 8, 9, 11 and 21.
Oliver Lemked Latex fixes and automatic generation of
olemke (at) core-dump.info appendices.
Christian Melsheimera Section 22.
cmels (at) sat.physik.uni-bremen.de
Sreerekha T.R.a Section 19.
rekha (at) sat.physik.uni-bremen.de

a Institute of Environmental Physics, University of Bremen,
P.O. Box 33044, D-28334 Bremen, Germany

b Department of Radio and Space Science, Chalmers University of Technology,
SE-41296 Göteborg, Sweden

c Institute for Atmospheric and Environmental Science, University of Edinburgh,
EH93JZ Edinburgh, Scotland, UK

d Department of Space Science, Luleå University of Technology,
Box 812, SE-98128 Kiruna, Sweden

Contents

I Overview 1

1 Introduction 3
1.1 Temporary internal notes . 3
1.2 Documentation guide . 4
1.3 Background . 4
1.4 What is ARTS . 4
1.5 The scope of ARTS . 4
1.6 Additional tools . 5

2 ARTS: concept and the programme 7
2.1 Main components . 7
2.2 Generic workspace methods . 8
2.3 Agendas . 8
2.4 Practical hints . 10

2.4.1 Test controlfiles . 10
2.4.2 Command line parameters . 10

Help . 10
Online documentation . 10
Verbosity levels . 11

3 The forward model: concepts, definitions and overview 13
3.1 The atmosphere . 13

3.1.1 Atmospheric dimensionality . 13
3.1.2 Altitude coordinates . 15
3.1.3 Atmospheric grids and fields . 17
3.1.4 The geoid and the surface . 18
3.1.5 The cloud box . 18

3.2 Stokes dimensionality . 19
3.3 Absorption . 19
3.4 Compulsory sensor and data reduction variables 20

3.4.1 Sensor position . 20
3.4.2 Line-of-sight . 20
3.4.3 Sensor characteristics and data reduction 21
3.4.4 Measurement sequences and blocks 22

3.5 Clear sky radiative transfer . 24

II CONTENTS

3.5.1 Calculation procedure . 24
3.5.2 Propagation paths . 24
3.5.3 The radiative background . 25
3.5.4 The agenda for clear sky radiative transfer, rte agenda 28
3.5.5 Surface effects . 28
3.5.6 Calculation accuracy . 28

3.6 Scattering . 30
3.6.1 DOIT – the discrete ordinate iterative module 30
3.6.2 MC – reversed Monte Carlo scattering module 30

II Algorithm Descriptions 31

4 Theoretical formalism 33
4.1 The forward model . 33
4.2 The sensor transfer matrix . 34
4.3 Weighting functions . 35

4.3.1 Basics . 35
4.3.2 Transformation between vector spaces 35

5 Description of the atmosphere 37
5.1 Atmospheric fields . 37

5.1.1 Gridded Fields . 37

6 Gas absorption 39
6.1 The gas absorption lookup table . 39

6.1.1 Introduction . 39
6.1.2 Lookup table concept . 40

Pressure dependence . 40
Temperature dependence . 40
Trace gas concentration dependence 41

6.1.3 Implementation . 41
Lookup table structure . 41
Workspace variables and methods 43

7 Propagation paths and the geoid 47
7.1 Implementation files . 47
7.2 Calculation approach . 47
7.3 The propagation path data structure . 50
7.4 Structure of implementation . 52

7.4.1 Main functions for clear sky paths 52
7.4.2 Main functions for propagation path steps 53

7.5 General comments . 54
7.5.1 Numerical precision . 54
7.5.2 Propagation paths and grid positions 55

7.6 Some basic geometrical relationships for 1D and 2D 56
7.7 Calculation of geometrical propagations paths 58

CONTENTS III

7.7.1 1D . 58
7.7.2 2D . 58
7.7.3 3D . 59

7.8 Refraction with simple Euler scheme . 63
7.8.1 1D . 65
7.8.2 2D . 67
7.8.3 3D . 69

7.9 Geoid ellipsoids and geodetic datums . 69
7.9.1 Geoid ellipsoids . 69
7.9.2 Geocentric and geodetic latitudes 70
7.9.3 Geodetic datums . 70

7.10 Control file examples . 72

8 Surface emission and reflections 75
8.1 The dielectric constant and the refractive index 75
8.2 Relating reflectivity and emissivity . 75
8.3 Specular reflections . 76
8.4 Control file examples . 78

9 Clear sky radiative transfer 79
9.1 The vector radiative transfer equation . 79
9.2 Standard algorithm . 80

9.2.1 Simulation of transmission measurements 80

10 Sensor modeling 81
10.1 Internal functions . 81

10.1.1 Weighting . 82
10.1.2 Summation . 83

10.2 Instrument characteristics . 85
10.2.1 Gaussian response . 86
10.2.2 Normalisation . 86

10.3 Sensor response initialisation . 86
10.3.1 No sensor . 86
10.3.2 Initialisation . 86

10.4 Antenna response . 87
10.4.1 Antenna diagram . 87
10.4.2 Antenna line-of-sight . 88
10.4.3 1D antenna . 88

10.5 Polarisation and rotation . 89
10.5.1 Polarisation response . 89
10.5.2 Rotating sensor . 90

10.6 Mixer and sideband filter response . 90
10.6.1 Single mixer and sideband filter 90
10.6.2 Multiple mixers with single backends 90
10.6.3 Conversion of IF to RF . 91

10.7 Backend response . 91

IV CONTENTS

10.8 Control file example . 92

11 Batch calculations 93
11.1 Workspace variables and methods . 93
11.2 Control file examples . 94

12 Description of clouds 97
12.1 Introduction . 97
12.2 Single scattering properties . 97

12.2.1 Coordinate systems . 97
12.2.2 Scattering datafile structure . 98
12.2.3 Definition of particle types . 100

Macroscopically isotropic and mirror-symmetric scattering media
(p20) . 100

12.3 Particle size distributions . 102
12.3.1 Mono-disperse particle distribution 102
12.3.2 Gamma size distribution . 103
12.3.3 McFarquhar and Heymsfield parametrization 104

12.4 Implementation . 104
12.4.1 Work space methods and variables 104

13 Scattering - DOIT module 107
13.1 The discrete ordinate iterative method . 107

13.1.1 Radiation field . 107
13.1.2 Vector radiative transfer equation solution 108
13.1.3 Scalar radiative transfer equation solution 111
13.1.4 Single scattering approximation 112

13.2 Sequential update . 112
13.2.1 Up-looking directions . 113
13.2.2 Down-looking directions . 114
13.2.3 Limb directions . 114

13.3 Numerical Issues . 115
13.3.1 Grid optimization and interpolation 115

Zenith angle grid optimization . 115
Interpolation methods . 117
Error estimates . 118

13.4 Implementation . 120
13.4.1 1D control file example . 120
13.4.2 DOIT frame . 120

The DOIT main agenda . 121
Agendas used in doit i fieldIterate 121

13.4.3 Propagation of the DOIT result towards the sensor 124
13.4.4 3D DOIT calculations . 124

CONTENTS V

14 Reversed Monte Carlo Scattering Module : ARTS-MC 125
14.1 Introduction . 125
14.2 Model . 126

14.2.1 Algorithm . 127
14.3 Implementation in ARTS: ScatteringMonteCarlo 129
14.4 Future Plans . 129

III Implementation Issues 131

15 The art of developing ARTS 133
15.1 Organization . 133
15.2 The ARTS build system . 134

15.2.1 Configure options . 134
15.2.2 Adding directories or files . 135

15.3 Conventions . 135
15.3.1 Numeric types . 135
15.3.2 Container types . 135
15.3.3 Terminology . 135
15.3.4 Global variables . 135
15.3.5 Files . 136
15.3.6 Version numbers . 136
15.3.7 Header files . 136
15.3.8 Documentation . 136

File comment . 138
Function comment . 138
Generic multi-line comment . 138
Generic single-line comment . 139

15.4 Extending ARTS . 139
15.4.1 How to add a workspace variable 139
15.4.2 How to add a workspace variable group 139
15.4.3 How to add a workspace method 140
15.4.4 How to add a source code file . 140
15.4.5 How to add a test case . 141

15.5 SVN issues . 141
15.5.1 How to check out arts . 141
15.5.2 How to update (if you already have a copy) 141
15.5.3 How to commit your changes . 141
15.5.4 How to cut a release . 142
15.5.5 How to move your arts working directory 143

15.6 Debugging (use of assert) . 143

16 The workspace 145
16.1 Implementation files . 145
16.2 Workspace Variables or WSVs . 147
16.3 Workspace Methods or WSMs . 147

VI CONTENTS

16.3.1 Specific WSMs . 149
16.3.2 Generic WSMs . 149
16.3.3 Agenda WSMs . 150

16.4 Agendas . 150
16.4.1 Introduction . 150

IV Mathematical functions 151

17 Vectors, matrices, tensors, and arrays 153
17.1 Implementation files . 153
17.2 Vectors . 154

17.2.1 Constructing a Vector . 154
17.2.2 VectorViews . 155
17.2.3 What you can do with a Vector (or VectorView) 156

Resize (only for Vector, not for VectorView!): 156
Get the number of elements: . 156
Sum up all elements: . 156
Element access: . 156
Copying Vectors: . 156
Copying in connection with views: 157
Assigning a scalar: . 157
Mathematical operators: . 157
Maximum and minimum: . 157
Scalar product: . 157
Arbitrary single-argument math functions: 158

17.3 Matrices . 158
17.3.1 Constructing a Matrix . 158
17.3.2 MatrixViews . 159
17.3.3 What you can do with a Matrix (or MatrixView) 159

Resize (only for Matrix, not for MatrixView!): 159
Get the number of rows or columns: 159
Refer to a row or column: . 159
Element access: . 160
Copying Matrices: . 160
Copying in connection with views: 161
Assigning a scalar: . 161
Mathematical operators: . 161
Maximum and minimum: . 161
Arbitrary single-argument math functions: 161
Transpose: . 161
Matrix multiplication: . 162

17.4 Tensors . 162
17.4.1 Constructing a tensor . 163
17.4.2 Tensor views . 163
17.4.3 What you can do with a tensor (or tensor view) 164

CONTENTS VII

Resize (only for tensors, not for views): 164
Get the extent of the various dimensions: 164
Slicing: . 164
Element access: . 164
Copying tensors: . 164
Assigning a scalar: . 165
Mathematical operators: . 165
Maximum and minimum: . 165
Arbitrary single-argument math functions: 165

17.4.4 Making things appear larger than they are 165
17.4.5 Summary . 166

17.5 Arrays . 166
17.5.1 Constructing an Array . 166
17.5.2 What you can do with an Array 167

Resize: . 167
Get the number of elements: . 167
Element access: . 167
Copying Arrays: . 167
Assigning a scalar of the base type: 168
Append to the end: . 168

17.6 Sparse matrices . 168
17.6.1 Constructing a Sparse . 168
17.6.2 What you can do with a Sparse . 169

Identity matrix: . 169
Resize: . 169
Get the number of rows, columns or non-zero elements: 169
Element access: . 169
Copying Matrices: . 170
Transpose: . 170
Matrix multiplication: . 170

18 Interpolation 171
18.1 Implementation files . 171
18.2 Green and blue interpolation . 172
18.3 Grid positions . 172
18.4 Setting up grid position arrays . 173
18.5 Interpolation weights . 173
18.6 Setting up interpolation weight tensors . 174

18.6.1 Blue interpolation . 175
18.6.2 Green interpolation . 175

18.7 The actual interpolation . 176
18.7.1 Blue interpolation . 176
18.7.2 Green interpolation . 177

18.8 Examples . 177
18.8.1 A simple example . 177
18.8.2 A more elaborate example . 179

VIII CONTENTS

18.9 Higher order interpolation . 181
18.10Summary . 183

19 Integration functions 185
19.1 Implementation files . 185
19.2 Trapezoidal Integration . 185
19.3 Solid Angle Integration . 186

20 Linear algebra functions 189
20.1 Implementation files . 189
20.2 Linear Equation Systems . 190

20.2.1 LU Decomposition . 190
20.2.2 Forward- and Backsubstitution . 191
20.2.3 More Applications of the LU Decomposition 192

20.3 Matrix Exponential Function . 192
20.3.1 Padé Approximation . 193

V Theoretical background 195

21 Basic radiative transfer theory 197
21.1 Basic definitions . 198
21.2 The Stokes parameters . 199
21.3 Single particle scattering . 200

21.3.1 Definition of the amplitude matrix 200
21.3.2 Phase matrix . 201
21.3.3 Extinction matrix . 201
21.3.4 Absorption vector . 202
21.3.5 Optical cross sections . 202

21.4 Particle Ensembles . 203
21.4.1 Single scattering approximation 204

21.5 Radiative transfer equation . 206
21.6 Blackbody radiation . 208
21.7 Simple solution without scattering and polarization 209
21.8 Special solutions . 211

22 Polarization and Stokes parameters 213
22.1 Polarization directions . 213
22.2 Plane monochromatic waves . 214
22.3 Measuring Stokes parameters . 219
22.4 Partial polarization . 222

22.4.1 Polarization of Radiation in the Atmosphere 225
22.4.2 Antenna polarization . 225

22.5 The scattering amplitude matrix . 227

CONTENTS IX

VI Bibliography and Appendices 229

VII Index 235

X CONTENTS

Part I

Overview

Chapter 1

Introduction

Some nice welcome text ...

1.1 Temporary internal notes

Below you find a list of things to do. Please add and remove items when appropriate. Let’s
try to keep this list rather complete and to have a person assigned for each point. This
in order to keep up the speed of creating this user guide and that no point is continously
expected to be fixed by someone else.

• Write this section. [Stefan/Patrick]

• Section 2 is marked as under construction. Correct? Update or remove comment.
[Stefan]

• Something shall be written about polarisation and Stokes in Section 3.3. [Chris-
tian/Claudia]

• Introduction to absorption and refractive index has to be written. The corresponding
chapter in Part 1 is empty. [???]

• Section 3.5.3 on Sensor polarisation to be written. Finer details shall be put in a
chapter on Sensor characteristics in Part 1. [Patrick/Christian]

• The theory we use for radiative transfer shall be described in Part IV in as general
terms as possible. The start of the scattering chapter should be moved to the new
chapter. The case without scattering can then be described as a special case of the
general expression. To gather the description of radiative transfer should be better
than to describe it in parts at different places in the user guide. [Claudia/Christian]

• An introductory part on scattering calculations shall be found in Sec. 3.8 [Clau-
dia/Shreerekha]

History
02xxxx xxx.

4 INTRODUCTION

• Start a chapter on clear sky radiative transfer for Part I. [Patrick]

• Is scattering chapter OK? [Claudia/Shreerekha]

• Fix chapter on agendas. [Stefan]

• There are some FIXME in chapter on Polarisation and Stokes Parameters. [Christian]

• In the appendix for WSM: The method names appear strange (starts with levelb). The
list of input and output varaibles needs a row break. [Oliver]

1.2 Documentation guide

Describe where different type of information can be found. For example, refer to full control
file examples in tests/.

1.3 Background

The number of satellite sensors in the millimeter and sub-millimeter spectral range is rapidly
growing. They use various frequency bands and observation geometries. Two important
groups of sensors are for example the nadir viewing millimeter wave sensors like AMSU1

and the limb viewing sub-millimeter wave sensors like the planned SMILES2.
For the data analysis all such sensors require accurate and fast forward models, which

can simulate measurements for a given atmospheric (and maybe ground) state. Depending
on the objective of the sensor, the measurement will depend for example on the distribution
of atmospheric temperature, water vapor, ozone, and many other trace gases.

So far, a lot of effort has been wasted in developing dedicated forward models for differ-
ent sensors, although all these models have many features in common. Moreover, existing
models were not easily modifiable and extendable. Hence, it was decided to develop a new
model which emphasizes modularity, extensibility, and generality.

[* Describe how ARTS was initiated and started. Release of version 1. *]

1.4 What is ARTS

[* ??? *]

1.5 The scope of ARTS

[* Update old text and add new stuff. *]
1The Advanced Microwave Sounding Unit is a sensor on board the polar orbiting satellites of the US-

American National Aeronautics and Space Administration.
2The Superconducting Sub-Millimeter Wave Limb Emission Sounder is a Japanese Sensor which will be

flown for the first time on the International Space Station.

1.6 ADDITIONAL TOOLS 5

1.6 Additional tools

[* Update old text and add new stuff. *]

6 INTRODUCTION

Chapter 2

ARTS: concept and the programme

This section describes the basic ideas underlying the ARTS programme. It also introduces
some terminology. You should read it if you want to understand how the program works
and how it can be used efficiently.

This section is not about physics, only about ARTS as a computer program. Refer
to Section 3 for an introduction to the physics of atmospheric radiative transfer and its
mathematical description in ARTS.

2.1 Main components

The most important notion in ARTS is the workspace. All physical quantities (for example
absorption coefficients) are workspace variables. But workspace variables can also be of a
more technical nature, for example various grids.

The program performs a calculation by executing a list of workspace methods, which
are specified in a controlfile. These workspace methods take workspace variables as input,
and generate workspace variables as output.

It is important to note that the controlfile has a fixed and well-defined syntax. This
syntax is understood by the ARTS parser. The great advantage of this concept is that it is
very easy to add new workspace variables and new workspace methods. The program has
an internal lookup table which lists all workspace methods, as well as their input variables,
output variables, and generic input/output parameters. To add a new method, one just has
to add an entry to this lookup table, and write the code for the method itself. No further
changes to the program are necessary. In particular, no changes to the program logic or to
the parser. How such an extension can be made practically is described in Section 15.

History
080729 Section on command line parameters updated by Stefan Buehler.
050613 Updated by Patrick Eriksson.
020613 Updated and extended by Stefan Buehler.
000616 Created by Stefan Buehler, based on my DPG2000 poster.

8 ARTS: CONCEPT AND THE PROGRAMME

Workspace Variable 2

Keyword

Parameters

Workspace Variable 3

Workspace Method

Workspace Variable 1

Figure 2.1: Specific workspace methods act on specific workspace variables to generate
other specific workspace variables. Additional input parameters can be specified as generic
input and output parameters in the controlfile.

2.2 Generic workspace methods

Generic methods (Figure 2.2) allow the user of the program even more freedom than specific
methods. A generic method is for example MatrixSetConstant, which can be used to
set any workspace variable which is a matrix. For example

MatrixSetConstant(z surface, 10, 10, 0.0)

will set all elements of z surface to 0.0 (as long as nrows and ncols are set).
Some methods are even more flexible, the are super generic. This means that they can

take any workspace variable as input. The most commonly used such methods are the XML
file methods. A workspace variable is read from a file in this way

ReadXML(f grid){"frequency grid"}
Generic methods are particularly useful for IO operations like in the example above. No
new IO methods are necessary for new workspace variables, as long as they are of standard
types already known to the program (for example vectors or matrices).

2.3 Agendas

Agendas are a special incarnation of a workspace method. In the controlfile an arbitrary
number of workspace methods can be added to an agenda. On invocation, the agenda ex-
ecutes its methods one after the other. The inputs and outputs defined for the agenda must
be satisfied by the invoked workspace methods. E.g., if an agenda has f grid in its list of

2.3 AGENDAS 9

Workspace Variable 2

Workspace Variable 3

Workspace Variable 1

Workspace Method

Generic

Control File

Keyword

Parameters

Input
Workspace
Variables

Output
Workspace
Variables

Figure 2.2: For generic workspace methods the workspace variables to act on are specified
in the controlfile.

output workspace variables, a workspace method which generates f grid must be added
to the agenda in the controlfile.

Even though it is possible to execute agendas directly from the controlfile with the
AgendaExecute method, the more common and intended use case is the internal invo-
cation by other workspace methods. This adds a grave amount of flexibility to arts. The
RteStd method for example calculates (besides other components) the emission term.
Without the means of an agenda, it would only be possible to use always the same method
for the emission calculation. By the use of an agenda the user can choose between different
methods to calculate the emission and plug them into the emission agenda in the control
file:

AgendaSet(emission_agenda){
emissionPlanck

}

RteStd internally calls the emission agenda and uses the user selected method for
calculating the emission term.

10 ARTS: CONCEPT AND THE PROGRAMME

2.4 Practical hints

2.4.1 Test controlfiles

The subdirectory tests contains some example controlfiles. You should study them to
learn more about how the program works. You can also run these controlfiles like this:

arts TestAbs.arts

This assumes that you are inside the directory where the controlfiles are, and that the arts
executable is in your path. You can also run all of the examples, by saying

make check

2.4.2 Command line parameters

ARTS offers a number of useful command line parameters. In general, there is a short form
and a long form for each parameter. The short form consists of a minus sign and a single
letter, whereas the long form consists of two minus signs and a descriptive name.

Help

To get a full list of available command line parameters, type

arts -h

or

arts --help

Online documentation

Most useful at the beginning should be the -d (--describe), -m (--methods),
-w (--workspacevariables), and -i (--input) flags. For instance, the -d
(--describe) flag gives you online documentation for any workspace method or
workspace variable. Usage:

arts -d f_grid

will print documentation about the workspace variable f grid, which happens to be the
monochromatic frequency grid.

But what methods and variables are available? You can find out by typing

arts -m all

which will list all workspace methods, or by typing

arts -w all

which will list all workspace variables. As you can see, these lists are quite long. But you
can get more specific information:

2.4 PRACTICAL HINTS 11

arts -m f_grid

will give you a list of all methods that can generate the workspace variable f grid. Specific
and generic methods are listed separately. Generic methods are in this case all methods
producing a Vector, since f grid belongs to this group. A similar task is performed by the
-i (--input) flag, with the difference that arts -i f grid will list those methods
that require f grid as input, whereas arts -m f grid lists those that produce f grid
as output. Finally,

arts -w surfaceFlat

will give you all variables required by the method abs coefCalc (the variable f grid
happens to be one of them).

Using these command line parameters, it is easy to build up a controlfile. The trick is,
to start at the end. Say you want to compute absorption coefficients. First of all, you have
to find out in which workspace variable these are stored. Look at the list produced by arts
-w all. You can use arts -d to look at some candidates a bit more closely. This way,
you will find out that abs coef is the variable you are looking for.

In the next step, you can use arts -m abs coef to find all methods that can calcu-
late abs coef. So, you will find the method abs coefCalc. Now you can use arts
-w abs coefCalc to find out the required input variables of that method. Then you can
use the -m flag again, to find the methods producing these variables, and so on.

Verbosity levels

The command line parameter

arts -r

or

arts --reporting

can be used to set how much output ARTS produces. You can supply a three-digit integer
here. Each digit can have a value between 0 and 3.

The last digit determines, how verbose ARTS is in its report file. If it is 0, the report file
will be empty, if it is 3 it will be longest.

The middle digit determines, how verbose ARTS is on the screen (stdout). The meaning
of the values is exactly as for the report file.

The first digit is special. It determines how much you will see of the output of agendas
(other than the main program agenda). Normally, you do not want to see this output, since
many agendas are called over and over again in a normal program run.

The agenda verbosity applies in addition to the screen or file verbosity. For example, if
you set the reporting level to ‘123’, you will get:

• From the main agenda: Level 1-2 outputs to the screen, and level 1-3 outputs to the
report file.

• From all other agendas: Only level 1 outputs to both screen and report file.

12 ARTS: CONCEPT AND THE PROGRAMME

If you set the reporting level to ‘120’, the report file will be empty.
The default setting for ARTS (if you do not use the command line flag) is ‘010’, i.e.,

only the important messages to the screen, nothing to the report file, and no sub-agenda
output.

Chapter 3

The forward model: concepts,
definitions and overview

This chapter introduces terms and concepts of ARTS as a forward model, in contrast to the
previous chapter that describes ARTS as a computer program. While the content of the
previous chapter is specific for ARTS, as the way to use a forward model program normally
differs significantly from one implementation to another, this chapter is of more general
nature. Most of the quantities treated here should be part of any forward model of the same
complexity as ARTS, where only details regarding the definition should differ. The aim of
this chapter is to give an overview of the forward model and to describe important terms
and concepts, in such a way that the content of this user guide can be fully appreciated and
that you shall understand how to construct a control file for your simulation problem.

3.1 The atmosphere

3.1.1 Atmospheric dimensionality

The structure of the modelled atmosphere can be selected to have different degree of com-
plexity, the atmospheric dimensionality. There exist three levels for the complexity of the
atmosphere, 1D, 2D and 3D, where 1D and 2D can be seen as special cases of 3D. The sig-
nificance of these different atmospheric dimensionalities and the coordinate systems used
are described below in this section. The atmospheric dimensionality is selected by setting
the workspace variable atmosphere dim to a value between 1 and 3. Variables for which
the size depends on the atmospheric dimensionality are checked, when used, to have a size
consistent with atmosphere dim. The atmospheric dimensionality is most easily set by
the functions AtmosphereSet1D, AtmosphereSet2D and AtmosphereSet3D.

3D In this, the most general, case, the atmospheric fields vary in all three spatial coordi-
nates, as in a true atmosphere (Figures 3.3 and 3.4). A spherical coordinate system

History
050613 First complete version finished by Patrick Eriksson.
020315 Started by Patrick Eriksson.

14 THE FORWARD MODEL: CONCEPTS, DEFINITIONS AND OVERVIEW

Atmospheric grids
Ground
Geoid
Cloud box
Atmospheric field

Figure 3.1: Schematic of a 1D atmosphere. The atmosphere is here spherically symmetric.
This means that the radius of the geoid, the surface and all the pressure levels are constant
around the globe. The fields are specified by a value for each pressure level. The extension
of the cloud box is either from the surface up to a pressure level, or between two pressure
levels (which is the case shown in the figure). The figure shows further that the surface must
be above the lowermost pressure level.

Atmospheric grids
Ground
Geoid
Atmospheric field

Figure 3.2: Schematic of a 2D atmosphere. The radii (for the geoid, the surface and the
pressure levels) vary here linear between the latitude grid points. The atmospheric fields
vary linearly along the pressure levels and the latitude grid points (that is, along the dotted
lines). Inside the grid cells, the fields have a bi-linear variation. The cloud box is not defined
for 2D.

is used where the dimensions are radius (r), latitude (α) and longitude (β), and a
position is given as (r, α, β). With other words, the standard way to specify a geo-
graphical position is followed. However, the way to specify the radial position differs
depending on the context, which is described in Section 3.1.2. The valid range for
latitudes is [−90◦,+90◦], where +90◦corresponds to the North pole etc. Longitudes
are counted from the Greenwich meridian with positive values towards the east. Lon-
gitudes can have values from -360◦to +360◦. When the difference between the last
and first value of the longitude grid is ≥ 360◦ then the whole globe is considered to

3.1 THE ATMOSPHERE 15

be covered. The user must ensure that the atmospheric fields for β and β + 360◦ are
equal. If a point of propagation path is found to be outside the range of the longitude
grid, this will results in an error if not the whole globe is covered. When possible, the
longitude is shifted with 360◦ in the relevant direction.

1D A 1D atmosphere can be described as being spherically symmetric (Figure 3.1). The
term 1D is used here for simplicity and historical reasons, not because it is a true 1D
case (a strictly 1D atmosphere would just extend along a line). A spherical symmetry
means that atmospheric fields and the surface extend in all three dimensions, but they
have no latitude and longitude variation. This means that, for example, atmospheric
fields vary only as a function of altitude and the surface constitutes the surface of a
sphere. The radial coordinate is accordingly sufficient when dealing with atmospheric
quantities, but the angular distance between the sensor and a point along the propaga-
tion path can be of interest, for example when determining the cross-link between two
satellites (a fact that shows that this is not a true 1D case). A polar coordinate system
is for this reason used when describing propagation paths, where the coordinate ad-
ditional to the radius gives the angular distance inside the viewing plane between the
sensor and the point of interest (see also Section 7.3). This latter coordinate system
coincides with the one used for 2D if the sensor position is set to be the zero point for
the latitudes. A 1D atmosphere is shown in Figure 3.1.

2D In contrast to the 1D and 3D cases, a 2D atmosphere extends only inside a plane
(Figure 3.2). A spherical coordinate system is accordingly not needed and a polar
system, consisting of a radial and an angular coordinate, is used. The 2D case is
most likely used for satellite measurements where the atmosphere is observed inside
the orbit plane. The angular coordinate corresponds then to the angular distance
along the satellite track, but the coordinate is for simplicity denoted as the latitude.
The zero point for the 2D latitude is arbitrary. No lower and upper limit exists for
the 2D latitude, and this allows that measurements from several subsequent orbits
can be simulated as one unit. The atmosphere is treated to be undefined outside the
considered plane. A 2D atmosphere is shown in Figure 3.2.

3.1.2 Altitude coordinates

Pressure The main altitude coordinate is pressure. This is most clearly manifested by the
fact that the vertical atmospheric grid consists of levels with equal pressure. The verti-
cal grid is consistently denoted as the pressure grid and the corresponding workspace
variable is p grid. The choice of having pressure as main altitude coordinate results
in that atmospheric quantities are retrieved as a function of pressure, not as a function
of geometrical altitude.

Pressure altitude A basic assumption in ARTS is that atmospheric quantities (tempera-
ture, geometric altitude, species VMR etc.) vary linearly with the logarithm of the
pressure. This corresponds roughly to assuming a linear variation with altitude.

Radius Geometrical altitudes are needed to determine the propagation path through the at-
mosphere etc. The main geometrical altitude coordinate is the distance to the centre

16 THE FORWARD MODEL: CONCEPTS, DEFINITIONS AND OVERVIEW

Figure 3.3: Schematic of a 3D atmosphere. Plotting symbols as in Figure 3.2. Radii and
fields are here defined to vary linearly along the latitude and longitude grid points. This
means that surfaces (such as the radius of the surface) have a bi-linear variation inside the
area limited by two latitude and longitude grid values, while the atmospheric fields have a
tri-linear variation inside the grid cells.

Figure 3.4: A latitudinal, or longitudinal, cross section of a 3D atmosphere. Plotting sym-
bols as in Figure 3.1. Radii and fields inside the cross section match the definitions for 2D.
The vertical extension of the cloud box is defined identical for 1D and 3D. The horizontal
extension of the cloud box is between two latitude and longitude grid positions, where only
one of the dimensions are visible in this figure.

3.1 THE ATMOSPHERE 17

of the coordinate system used, the radius. This is a natural consequence of using a
spherical or polar coordinate system. The radius is used inside ARTS for all geomet-
rical calculations and to store the position of the sensor (Section 3.4).

Geometrical altitude The term geometrical altitude signifies here the difference in radius
between a point and the geoid (Section 3.1.4) along the vector to the centre of the
coordinate system (Equation 3.1). Hence, the geometrical altitude is not measured
along the local zenith direction (the normal to the reference geoid). Geometrical
altitudes are mainly used to facilitate the input of the surface altitude, the altitude
of the pressure levels etc. This is the case as these quantities are known rather with
respect to the geoid than with respect to the Earth’s centre.

3.1.3 Atmospheric grids and fields

As mentioned above, the vertical grid of the atmosphere consists of a set of layers with equal
pressure, the pressure grid (p grid). This grid must of course always be specified. It is not
allowed that there is an altitude gap between the surface and the lowermost pressure level.
That is, the surface pressure must be smaller than the pressure of the lowermost vertical
grid level. On the other hand, it is not necessary to match the surface and the first pressure
level, the pressure grid can extend below the surface level. The upper end of the pressure
grid gives the practical upper limit of the atmosphere as vacuum is assumed above. With
other words, no absorption and refraction take place above the uppermost pressure level.

A latitude grid (lat grid) must be specified for 2D and 3D. For 2D, the latitudes
shall be treated as the angular distance along the orbit track, as described above in Sec-
tion 3.1.1. The latitude angle is throughout calculated for the vector going from the centre
of the coordinate system to the point of concern. Hence, the latitudes here correspond to
the definition of the geocentric latitude, and not geodetic latitudes (see Section 7.9.1). This
is in accordance to the definition of geometric altitudes found above. For 3D, a longitude
grid (lon grid) must also be specified. Valid ranges for latitude and longitude values are
given in Section 3.1.1.

The atmosphere is treated to be undefined outside the latitude and longitude ranges
covered by the grids, if not the whole globe is covered. This results in that a propagation
path is not allowed to cross a latitude or longitude end face of the atmosphere, if such exists,
it can only enter or leave the atmosphere through the top of the atmosphere (the uppermost
pressure level). See further Section 3.5.2. The volume (or area for 2D) covered by the grids
is denoted as the model atmosphere.

If the longitude and latitude grids are not used for the selected atmospheric dimension-
ality, then the longitude grid (for 1D and 2D) and the latitude grid (for 1D) must be set to be
empty, but when dealing with the size of variables the grid length shall be treated to be one.
For example, the matrix describing the geoid (see Section 3.1.4) has for 1D the size [1, 1].

The basic atmospheric quantities are represented by their values at each crossing of the
involved grids (indicated by thick dots in Figures 3.1 - 3.4), or for 1D at each pressure level
(thick dots in Figure 3.1). This representation is denoted as the field of the quantity. The
field must, at least, be specified for the geometric altitude of the pressure levels (z field),
the temperature (t field) and considered atmospheric species (vmr field). The fields
are assumed to be piece-wise linear functions vertically (with pressure altitude as the vertical

18 THE FORWARD MODEL: CONCEPTS, DEFINITIONS AND OVERVIEW

coordinate, Section 3.1.2), and along the latitude and longitude edges of 2D and 3D grid
boxes. For points inside 2D and 3D grid boxes, multidimensional linear interpolation is
applied (that is, bilinear interpolation for 2D etc.). Note especially that this is also valid for
the field of geometrical altitudes (z field). Fields are rank-3 tensors. For example, the
temperature field is T = T (P, α, β). That means each field is like a book, with one page
for each pressure grid point, one row for each latitude grid point, and one column for each
longitude grid point. In the 1-D case there is just one row and one column on each page.

3.1.4 The geoid and the surface

The geoid is an imaginary surface used as a reference when specifying the surface alti-
tude and the altitude of pressure levels. Any shape of the geoid is allowed but a smoothly
varying geoid is the natural choice, with the enters of the geoid and the coordinate system
coinciding. The geoid should normally be set to the reference ellipsoid for some global
geodetic datum, such as WGS-84. For further reading on geoid ellipsoids and WGS-84, see
Section 7.9.1.

Inside ARTS, the geoid is represented as a matrix (r geoid), holding the geoid radius,
r�, for each crossing of the latitude and longitude grids, r� = r�(α, β). The geoid is not
defined outside the ranges covered by the latitude and longitude grids, with the exception
for 1D where the geoid by definition is a full sphere. The surface altitude, zg, is given as
the geometrical altitude above the geoid. The radius for the surface is accordingly

rg = r� + zg (3.1)

As already mentioned, a gap between the surface and the lowermost pressure level is not
allowed.

The ARTS variable for the surface altitude (z surface) is a matrix of the same size
as the geoid matrix. For 1D, the surface is a sphere by definition (as the geoid), while for
2D and 3D any shape is allowed and a rough model of the surface topography can be made.
The treatment of surface emission and reflectivity is discussed in Section 3.5.5.

3.1.5 The cloud box

In order to save computational time, scattering calculations are limited as far as possible to
the part of the atmosphere containing clouds and other scattering objects. The atmospheric
region in which scattering shall be considered is denoted as the cloud box, and it is discussed
here as it acts as an additional atmospheric limit when calculating propagation paths (see
Section 3.5). Cloud box calculations can be performed in 1D and 3D mode, but not for 2D.

The cloud box is defined to be rectangular in the used coordinate system, with limits
exactly at points of the involved grids. This means, for example, that the vertical limits of
the cloud box are two pressure levels. For 3D, the horizontal extension of the cloud box is
between two points of the latitude grid and likewise in the longitude direction (Figure 3.4).
The latitude and longitude limits for the cloud box cannot be placed at the end points of the
corresponding grid as it must be possible to calculate the incoming intensity field. The cloud
box is activated by setting the variable cloudbox on to 1. The limits of the cloud box
are stored in cloudbox limits. It is recommended to use the method CloudboxOff

3.2 STOKES DIMENSIONALITY 19

when no scattering calculations shall be performed. This method assigns dummy values to
all workspace variables not needed when scattering is neglected.

When the radiation entering the cloud box is calculated this is done with the cloud box
turned off. This to avoid to end up in the situation that the radiation entering the cloud box
depends on the radiation coming out from the cloud box. It is the task of the user to define
the cloud box in such way that the link between the outgoing and ingoing radiation
fields of the cloud box can be neglected. The main point to consider here is radiation
reflected by the surface. To be formally correct there should never be a gap between the
surface and the cloud box. This is the case as radiation leaving the cloud box can then
be reflected back into the cloud box by the surface. If it is considered that the surface is
a scattering object it is clear that the surface should in general be part of the cloud box.
However, for many cases it can be accepted to have a gap between the surface and the cloud
box, with the gain that the cloud box can be made smaller. Such a case is when the surface is
treated to act as blackbody, the surface is then not reflecting any radiation. Reflections from
the surface can also be neglected if the zenith optical thickness of the atmosphere between
the surface and cloud box is sufficiently high.

3.2 Stokes dimensionality

To full polarisation state of radiation can be described by the Stokes vector. The vector can
be defined in different ways, but it has always four elements. The Stokes vector, I, is here
written as

I =

I
Q
U
V

 , (3.2)

where the first component (I) is the full intensity of the radiation, the second component (Q)
is the difference between vertical and horizontal polarisation, the third component (U) is the
difference for ±45◦ polarisation and the last component (Q) is the difference between left
and right circular polarisation. Further details on polarisation and definition of the Stokes
vector are found in Section 22.

ARTS is a fully polarised forward model, but can be run with a smaller number of Stokes
components. The selection is made with the workspace variable stokes dim. For exam-
ple, gaseous absorption and emission are in general unpolarised, and if not scattering has to
be considered it is sufficient to only include the first Stokes components in the simulations.
To include higher order Stokes components results in this case only in slower calculations.
The general case is here denoted as vector radiative transfer, while scalar radiative transfer
refers to the case when only the first Stokes component is considered.

3.3 Absorption

Absorption can not yet be calculated internally inside this ARTS version. So far absorption
has to be imported, where for example the operational ARTS version (1.0.x) can be used to
calculate the needed absorption coefficients. The absorption is put into a look-up table and
the absorption is later extracted from this table by interpolation, as described in Section 6.

20 THE FORWARD MODEL: CONCEPTS, DEFINITIONS AND OVERVIEW

3.4 Compulsory sensor and data reduction variables

The instrument that detects the simulated radiation is denoted as the sensor. The forward
model is constructed in such way that a sensor must exist. For cases when only monochro-
matic pencil beam radiation is of interest, the positions and directions for which the radiation
shall be calculated are given by specifying an imaginary sensor with infinite frequency and
angular resolution. The workspace variables for the sensor that always must be specified are
sensor response, sensor pos, sensor los, antenna dim, mblock za grid
and mblock aa grid. These variables are presented separately below. The discussion of
sensor workspace variables is continued in Section 10. Section 3.5 gives further insights in
how the sensor is treated in ARTS.

3.4.1 Sensor position

The observation positions of the sensor are stored in sensor pos. This is a matrix where
each row corresponds to a sensor position. The number of columns in the matrix equals the
atmospheric dimensionality (1 column for 1D etc.). The columns of the matrix (from first to
last) are radius, latitude and longitude. Accordingly, row i of sensor pos for a 3D case is
(ri, αi, βi). The sensor position can be set to any value, but the resulting propagation paths
(also dependent on sensor los) must be valid with respect to the model atmosphere
(see Section 3.5.2). An obviously incorrect choice is to place the senor below the surface
altitude. If the sensor is placed inside the model atmosphere, any sensor line-of-sight is
allowed, this including the cases that the sensor is placed on the surface looking down, and
that the sensor is placed inside the cloud box.

The fact that the sensor position can be given any value implies that the radius must be
used in sensor pos, in contrast to z surface and z field where the altitude above
the geoid is applied. This is the case as, for 2D and 3D, the sensor can be placed outside the
covered latitude and longitude ranges, thus outside the defined geoid, and the geometrical
altitude is undefined.

The sensor is treated to be motionless when calculating the spectrum, or spectra, for
each given observation position. One or several spectra can be calculated for each position
as described in Section 3.4.4.

3.4.2 Line-of-sight

The viewing direction of the sensor, the line-of-sight, is described by two angles, the zenith
angle (ψ) and the azimuth angle (ω). The zenith angle exists for all atmospheric dimension-
alities, while the azimuth angle is defined only for 3D. The term line-of-sight is not only
used in connection with the sensor, it is also used to describe the local propagation direction
along the path taken by the observed radiation (Section 3.5.2). The zenith and azimuthal
angles are defined in an identical way in both of these contexts (sensor pointing direction;
local propagation direction). This is expected as the position of the sensor is the end point
of the propagation path. The sensor line-of-sight is the direction the antenna is pointed to
receive the radiation. The line-of-sight for propagation paths is defined likewise, it is the
direction in which a hypothetical sensor must be placed to receive the radiation along the
propagation path at the point of interest. This means that the line-of-sight and the photons

3.4 COMPULSORY SENSOR AND DATA REDUCTION VARIABLES 21

zenith

northsouth

line−of−sight

ω
ψ

Figure 3.5: Definition of zenith an-
gle, ψ, and azimuth angle, ω, for
a line-of-sight. The figure shows a
line-of-sight with a negative azimuth
angle.

are going in opposite directions. As a true sensor has a finite spatial resolution (described
by the antenna pattern), theoretically there is an infinite number of line-of-sights associated
with the sensor, but in the forward model, spectra are only calculated for a discrete set of
directions. If a sensor line-of-sight is mentioned without any comments, it refers to the
direction in which the centre of the antenna pattern is directed.

The zenith angle, ψ, is simply the angle between the line-of-sight and the zenith direc-
tion (Figure 3.5). The valid range for 1D and 3D cases is [0, 180◦]. In the case of 2D, zenith
angles down to -180◦ are also allowed, where the distinction is that positive angles mean
a viewing direction towards higher latitudes, and negative angles mean a viewing direction
towards lower latitudes. It should be mentioned that the zenith and nadir directions are here
defined to be along the line passing the centre of the coordinate system and the point of
concern (Section 7.9.1). A nadir observation, ψ = 180◦, is thus a measurement towards the
centre of the coordinate system.

The azimuth angle, ω, is given with respect to the meridian plane. That is, the plane
going through the north and south poles of the coordinate system (α = ±90◦) and the
sensor. The valid range is [−180◦, 180◦] where angles are counted clockwise; 0◦means
that the viewing or propagation direction is north-wise and +90◦ means that the direction
of concern goes eastward. This definition does not work for position on the poles. To
cover these special cases, the definition is extended to say that for positions on the poles the
azimuth angle equals the longitude along the viewing direction. For example, if standing on
any of the poles and the viewing direction is towards Greenwich, the azimuth angle is 0◦.

The sensor line-of-sights are stored in sensor los. This workspace variable is a
matrix, where the first column holds zenith angles and the second column is azimuth angles.
For 1D and 2D there is only one column in the matrix, while for 3D a row i of the matrix is
(ψi, ωi). The number of rows for sensor los must be the same as for sensor pos.

3.4.3 Sensor characteristics and data reduction

The term “sensor characteristics” is used here as a comprehensive term for the response
of all sensor parts that affect how the field of monochromatic pencil beam intensities are
translated to the recorded spectrum. For example, the antenna pattern, the side-band filtering

22 THE FORWARD MODEL: CONCEPTS, DEFINITIONS AND OVERVIEW

and response of the spectrometer channels are normally the most important characteristics
for a microwave heterodyne radiometer. Any processing of the spectral data that takes
place before the retrieval is denoted as data reduction. The most common processing is to
represent the original spectra with a smaller set of values, that is, a reduction of the data
size. The most common data reduction techniques is binning and Hotelling transformation
by an eigenvector expansion.

In ARTS, the influence of sensor characteristics and data reduction is incorporated by
transfer matrices, as described in Section 4.2 and 10. The application of these transfer
matrices assumes that each step is a linear operation, which should be the case for the
response of the parts of a well designed instrument. Non-linear data reduction could be
handled by special workspace methods.

The sensor and data reduction are described as a series of units, each having
its own transfer matrix. There is only one compulsory transfer matrix and it is
sensor response. There are several workspace variables associated with this transfer
matrix where antenna dim, mblock za grid and mblock aa grid are the compul-
sory ones.

The variable antenna dim gives the dimensionality of the antenna pattern, where the
options are 1 and 2, standing for 1D and 2D, respectively. A 1D antenna dimensionality
means that the azimuth extension of the antenna pattern is neglected, there is only a zenith
angle variation of the response. A 2D antenna pattern is converted to a 1D pattern by
integrating the azimuth response for each zenith angle. For cases with 1D antenna patterns,
mblock aa grid must be set to be an empty vector.

For each sensor position, a number of monochromatic pencil beam spectra are calcu-
lated. The monochromatic frequencies are given by f grid (Section 3.3). The pencil beam
directions are obtained by summing the sensor line-of-sight angles (sensor los) for the
position and the values of mblock za grid and mblock aa grid. For example, pencil
beam zenith angle i is calculated as

ψi = ψ0 + ∆ψi (3.3)

where ψ0 is the sensor line-of-sight for the position of concern and ∆ψi is value i of
mblock za grid. With other words, mblock za grid and mblock aa grid give
the grid (relative to the sensor line-of-sight) for the calculation of the intensity field that will
be weighted with the antenna response.

3.4.4 Measurement sequences and blocks

The series of observations modelled by the simulations is denoted as the measurement se-
quence. That is, a measurement sequence covers all spectra recorded at all considered
sensor positions. A measurement sequence consists of one or several measurement blocks.
The observations inside the various blocks differ only with an off-set of the line-of-sight,
all other factors should be common for all blocks. A block can be treated as a measurement
cycle that is repeated, an integer number of times, to form the measurement sequence. The
measurement blocks correspond normally to each unique sensor position of the sequence.

A measurement block covers one or several recorded spectra, depending on the mea-
surement conditions and the atmospheric dimensionality. A block can consist of several
spectra when there is no effective motion of the sensor with respect to the atmospheric fields.

3.4 COMPULSORY SENSOR AND DATA REDUCTION VARIABLES 23

It should be noted that for 1D cases, a motion along a constant radius has no influence on
the simulated spectra as the same atmospheric fields are seen for a given viewing direction.
It is favourable, if possible, to handle all spectra as a single block, instead of using a block
for each sensor position. This is the case as the antenna patterns for the different line-of-
sights are normally overlapping and a pencil beam spectrum can be used in connection with
several measurement spectra to estimate the intensity field. If a measurement sequence is
divided into several blocks even if a single block would be sufficient, pencil beam spectra
for basically identical propagation paths can be calculated several times, which of course
will increase the computational time. To summarise, for cases when the sensor is not in
motion, or with a 1D atmosphere and a sensor not moving vertically, the aim should be to
use a single block for the measurement sequence.

If not a single block is used, the standard option should be that the blocks cover one
spectrum each. There could exist reasons to select an intermediate solution, to let the extent
of the blocks be several spectra (but not the full measurement sequence). This could be the
case when the atmospheric dimensionality is 2D or 3D, and the sensor is moving but the
movement during some subsequent spectra can be neglected. If this can be done must be
judged by comparing the movement of the sensor during the extent of the considered block
size and the spatial resolution, in the direction of the movement, that is hoped to be achieved.
If this intermediate solution shall be an option, the difference in zenith and azimuth angles
between the spectra must be the same for all blocks, otherwise sensor response cannot
be applied for all blocks as done below in Equation 3.5.

For each block, pencil beam spectra are calculated for the line-of-sights obtained when
summing sensor los and mblock za grid (and possibly mblock aa grid), as de-
scribed in Section 3.4.3. The pencil beam spectra for each line-of-sight are appended verti-
cally to form a common vector, ib. Values are put in following the order in f grid. Hence,
the frequencies for this vector are

ib =

 ν1
...
νn

... ν1
...
νn

(3.4)

where νi is element i of f grid and n the length of the same vector. The order of the
angles inside mblock za grid and mblock aa grid is followed when looping the
pencil beam directions, where the azimuth angle direction is the innermost loop. That is,
for 2D antenna patterns all azimuth angles are looped for the first zenith angle etc.

The workspace variable sensor response is here denoted as Hb. It is applied
on each ib and the results are appended vertically, following the order of the positions in
sensor pos

y =

Hbib,1
Hbib,2

...
Hbib,n

 (3.5)

24 THE FORWARD MODEL: CONCEPTS, DEFINITIONS AND OVERVIEW

where 1 indicates the first sensor position etc. This equation shows that
sensor response shall contain at least a description of the antenna response. The ma-
trix Hb can also cover other sensor characteristics and data reduction if the features of
concern are common for all measurement blocks.

As the sensor line-of-sight and block grid values are just added, there is an ambiguity of
the line-of-sight. It is possible to apply a constant off-set to the line-of-sights, if the block
grids are corrected accordingly. For example, if the simulations deal with limb sounding
and a 1D atmosphere, where normally a single block should be used despite a number of
spectra are recorded, it could be practical to set the line-of-sight to the viewing direction of
the uppermost or lowermost spectrum, and the zenith angles in mblock za grid will not
be centred around zero which is the case when the “true” line-of-sight is used.

It should be noted that the compulsory sensor variables give no information about the
content of the obtained y, as it is not clear which parts and features the block transfer matrix
covers. If Hb only incorporates the antenna pattern, the result is a set of hypothetical spectra
corresponding to a point inside the sensor. On the other hand, if Hb includes the whole of
the sensor and an eigenvector data reduction, the result is not even a spectrum in traditional
way, it is just a column of coefficients with a vague physical meaning.

3.5 Clear sky radiative transfer

An introduction to radiative transfer theory is given in Section 21. This section describes
how the radiative transfer equations are solved practically in ARTS. The general presen-
tation assumes that the simulations deal with an emission measurement. Focus is put on
emission measurements as ARTS is intended primarily for such observations. However,
simulations of transmission measurements are also possible, which is discussed especially
in Section 9.2.1.

3.5.1 Calculation procedure

The overall structure of the part solving the radiative transfer equation is fixed. The cor-
responding workspace method is RteCalc. The calculation procedure of RteCalc is
outlined in Algorithm 1. For further details of each calculation step, see the indicated equa-
tion or section.

The primary unit for emission spectra, the unit of ib in Equation 3.5, is [W/(Hz·m2·sr)].
The emission intensity corresponds directly with the definition of the Planck function in
Equation 21.46, no scaling terms are applied.

3.5.2 Propagation paths

A pencil beam path through the atmosphere to reach a position along a specific line-of-sight
is denoted as the propagation path. Propagation paths are described by a set of points on the
path, and the distance along the path between the points. These quantities, and a number
of auxiliary variables, are stored together in a structure described in Section 7.3. The path
points are primarily placed at the crossings of the path with the atmospheric grids (p grid,
lat grid and lon grid). A path point is also placed at the sensor if it is placed inside
the atmosphere. Points of surface reflections and tangent points are also included if such

3.5 CLEAR SKY RADIATIVE TRANSFER 25

Algorithm 1 Outline of the overall clear sky radiative transfer calculations (RteCalc).
allocate memory for the matrix y (Equation 3.5)
allocate memory for the matrix ib (Equation 3.4)
for all sensor positions do

for all pencil beam directions of the block do (Section 3.4.4)
determine the propagation path by ppathCalc (Section 3.5.2)
determine the radiation at the start of the propagation path (Section 3.5.3)
call rte agenda
copy iy to correct part of ib

end for
put the product Hbib in correct part of y

end for

exist. More points can also be added to the propagation path, for example, by setting an
upper limit for the distance along the path between the points.

The propagation paths are determined basically by starting at the sensor and following
the path backwards by some ray tracing technique. If the sensor is placed above the model
atmosphere, geometrical calculations are used (as there is no refraction in space) to find
the crossing between the path and the top of the atmosphere where the ray tracing then
starts. Paths are tracked backwards until the top of the atmosphere is reached, or there is
an intersection with the cloud box or the surface. The propagation path (or paths) before a
surface reflection is calculated when determining the up-welling radiation from the surface
(Section 3.5.5). Example on propagation paths are shown in Figures 3.6 and 3.7.

Not all propagation paths are allowed for 2D and 3D. The paths can only enter and leave
the model atmosphere at the top of the atmosphere, as the atmospheric fields are treated to
be undefined outside the covered latitude and longitude ranges (Figure 3.8). In addition, if
the sensor is placed outside the model atmosphere, the line-of-sight zenith angle must be
≥ 90◦, and the tangent point position of the propagation paths must be inside the end points
of the latitude and longitude grids, but can be above the top of the atmosphere. Hence, it is
allowed that the propagation path is totally outside the atmosphere, as long as the viewing
direction is downward and the lowest point of the path, the tangent point, is inside the
latitude and longitude limits of the model atmosphere.

Propagation paths are determined by the function ppathCalc. This function
is normally only called from RteCalc, but it can be called separately if needed.
The calculation of the path from one crossing of the grids to next crossing is de-
fined by ppath step agenda. Depending on which function that is selected for
ppath step agenda, refraction will be considered or not, a length criterion between
the path points will be applied etc. Functions intended for ppath step agenda include
ppath stepGeometric and ppath stepRefractionEuler.

3.5.3 The radiative background

The radiative intensity at the starting point of the path, and in the direction of the line-of-
sight at that point, is denoted as the radiative background. Four possible radiative back-
grounds exist:

26 THE FORWARD MODEL: CONCEPTS, DEFINITIONS AND OVERVIEW

Figure 3.6: Examples on allowed propagation paths for a 2D atmosphere. The atmosphere is
plotted as in Figure 3.2 beside that the points for the atmospheric fields are not emphasised.
The position of the sensor is indicated by an asterix (∗), the points defining the paths are
plotted as circles (◦), joined by a solid line. The part of the path outside the atmosphere,
not included in the path structure, is shown by a dashed line. Path points corresponding to a
tangent point are marked by an extra plus sign (⊕). The shown paths include the minimum
set of definition points. There exists also the possibility to add points inside the grid cells,
for example, to ensure that the distance between the path points does not exceed a specified
limit.

Figure 3.7: Examples on allowed propagation paths for a 1D atmosphere with an activated
cloud box. Plotting symbols as in Figure 3.6. When the sensor is placed inside the cloud
box, the path is defined with a single point, to know for which position and line-of-sight the
intensity field of the cloud box shall be interpolated.

3.5 CLEAR SKY RADIATIVE TRANSFER 27

Figure 3.8: Examples on not allowed propagation paths for a 2D atmosphere. The con-
straints for allowed paths are discussed in the text.

Space When the propagation path starts at the top of the atmosphere, space is the radia-
tive background. The normal case should be to set the radiation at the top of the
atmosphere to be cosmic background radiation. An exception is when the sensor is
directed towards the sun. The radiative background at the top of the atmosphere is de-
termined by iy space agenda. If a propagation path is totally outside the model
atmosphere, the observed monochromatic pencil beam intensity (ib in Algorithm 1)
equals the output of iy space agenda.

The surface The sum of surface emission and radiation reflected by the surface is the ra-
diative background when the propagation path intersects with the surface. The calcu-
lation of the up-welling radiation from the surface is described in Section 3.5.5.

Surface of cloud box For cases when the propagation path enters the cloud box the radia-
tive background is the intensities leaving the cloud box. This radiation is obtained
by iy cloudbox agenda. How to perform calculations involving scattering are
described in Sections 3.6 and 14.

Interior of cloud box If the sensor is situated inside the cloud box, there is basically no
propagation path. The radiative background, and also the final spectrum, equals the
internal intensity field of the cloud box at the position of the sensor, in the direction of
the sensor line-of-sight. This case is also handled by iy cloudbox agenda and
can require some special considerations, as described in Section 3.6.

It should be noted that except for the first case above, the determination of the radiative
background involves further radiative transfer calculations. For example, the radiation re-
flected by the surface can be calculated by a recursive call of RteCalc and the radiative
background for that calculation is then space or the cloud box. The intensity field entering
the cloud box is calculated by calls of RteCalc (with cloud box deactivated) and the ra-
diative background is then space or the surface. This results in that space is normally the
ultimate radiative background for the calculations. The exception is for propagation paths
that intersects with the surface, and the surface is treated to act as a blackbody. For such
cases, the propagation path effectively starts at the surface.

28 THE FORWARD MODEL: CONCEPTS, DEFINITIONS AND OVERVIEW

3.5.4 The agenda for clear sky radiative transfer, rte agenda

The task of rte agenda is to perform the clear sky radiative transfer calculation along
the given propagation path. The determination of the radiative background is not part of
the task of rte agenda, it is in the standard case done by RteCalc (see Algorithm 1).
In fact, methods for rte agenda just assumes that iy contains spectral values that make
sense and uses these values as start values for the calculations. This means that it is possible
to use rte agenda also outside of RteCalc, as long as iy and ppath are set correctly.

The radiative transfer equation can be solved in many ways, and with different level of
refinement. The standard approach in ARTS is to solve the radiative transfer from one point
of the propagation path to next. The simplest expression, for scalar radiative transfer, that
can be used in this way is (cf. Equation 21.54)

Ii+1(ν) = Ii(ν)e−τi +B(ν, Ti)(1− e−τi) (3.6)

where I(ν) is the monochromatic (and unpolarised) intensity, i is path step index, τ is the
optical thickness along the path of the step, B the Planck function, and Ti is the mean of the
temperature at the end points of the step. This expression, and the corresponding ones for
vector radiative transfer, are implemented in the method RteEmissionStd. All methods
for rte agenda adapt automatically to the value of stokes dim (see also Section 3.2).

3.5.5 Surface effects

If there is an interception of the propagation path by the surface, the agenda
iy surface agenda is supposed to provide the upwelling radiation at the intercep-
tion point along the propagation path. The upwelling radiation is provided by setting iy.
There exist a standard method for iy surface agenda, named as surfaceCalc.
The primary input to this method are the workspace variables surface emission,
surface los and surface rmatrix. These three variables define together the prop-
erties of the surface, where the expression used to model surface emission and reflections is
(Figure 3.9)

ius = ie +
∑
l

Rlidl (3.7)

where i is the Stokes vector for one frequency, ius is the total upward travelling intensity
from the surface along the propagation path, ie is the emission from the surface, idl is the
downward travelling intensity reaching the surface along direction l, and Rl is the reflection
coefficient matrix from direction l to the present propagation path. The emission from
the surface (ie) is stored in surface emission, the directions l for which downward
travelling intensities are given by surface los, and the reflection coefficients (R) are
stored in surface rmatrix. Surface reflections and emission are discussed further in
Section 8.

3.5.6 Calculation accuracy

The accuracy of the calculations depends on many factors. For many factors, such as spec-
troscopic parameters, there is nothing else to do than using best avaliable data. On the

3.5 CLEAR SKY RADIATIVE TRANSFER 29

Ie

I1
d

I

I
I

3
4 5I

d

d
d d

2

propagation

patterns
reflection

path

Figure 3.9: Schematic of Equation 3.7.

other hand, for other factors there is a trade-off between accuracy and speed. More accu-
rate calculations requires normally also more computer memory. All different grids and the
propagation path step length fall into this category of accuracy factors. It could be worth
discussing the selection of atmospheric grids and the path step length as there can be some
confusion about how that affects the accuracy.

The main purpose of the atmospheric grids (p grid, lat grid and lon grid) is
to build up the mesh on which the atmospheric fields are defined. This means that the
spacing of these grids shall be selected having the representation of the atmospheric fields in
mind. That is, the spacing shall be fine enough that the atmospheric field is sufficiently well
approximated by the piecewise (multi-)linear representation between the grid crossings.
The result is that a finer spacing must be used to represent correctly atmospheric fields with
a lot of structure, while the grids can have fewer points when the atmospheric fields are
smooth.

The accuracy when performing the actual radiative transfer calculations depends on
the refinement of the expressions used and the discretisation of the propagation path. If
Equation 3.6 is used, the underlaying assumptions are that the temperature is constant, and
that the absorption varies linearly, along the propagation path step. These assumptions are
of course less violated if the path step length is made small. An upper limit of the path step
length is set by the generic input argument lmax. In many cases it should suffice to just
include path points at the crossings of the atmospheric grids (lmax≤ 0). An exception can
be limb sounding where the path step length can be very long around the tangent point, but
a limit of about 25 km should suffice normally.

As points are always included in the propagation paths at the crossings of the atmo-
spheric grids, finer grids will give shorter path steps. However, it is neither good practice
or efficient to use the atmospheric grids to control the accuracy of the radiative transfer

30 THE FORWARD MODEL: CONCEPTS, DEFINITIONS AND OVERVIEW

calculations. An upper limit on the path step length shall be applied for this purpose.1

3.6 Scattering

The scattering inside the cloud box can be handled by several methods. The different mod-
ules are here only quickly outlined, details are given in seperate chapters.

3.6.1 DOIT – the discrete ordinate iterative module

In the DOIT module, the complete intensity field inside the cloud box is determined. This
means that the intensity from a discrete set of directions is calculated at all positions of the
grid mesh inside the cloud box. The intensity field is determined in an iterative manner,
and this calculation must be performed before calling RteCalc. The DOIT module is
described in Chapter 13.

3.6.2 MC – reversed Monte Carlo scattering module

The approach in the MC module is to follow propagation paths backwards, with scattering
angles and path lengths randomly chosen from probability density functions determined by
the scattering phase function, and a scalar extinction coefficient, respectively. The phase
matrices for every scattering event and scalar extinction are then sequentially applied to the
source Stokes vector to give the Stokes vector contribution for each photon. The tracking of
the propagation paths starts at the cloud box boundary and continues backwards to the point
of emission or the boundary of the cloud box (whatever comes first). See further Chapter
14.

1Further discussion can be found in message 399 and 410 of the ARTS developers mailing list.

Part II

Algorithm Descriptions

Chapter 4

Theoretical formalism

In this section, a theoretical framework of the forward model is presented. The presentation
follows Rodgers [1990], but some extensions are made, for example, the distinction between
the atmospheric and sensor parts of the forward model is also discussed. After this chapter
was written, C.D. Rodgers published a textbook [Rodgers, 2000] presenting the formalism
in more detail than Rodgers [1990]. Modelling of sensor characteristics is not yet included
in ARTS (this part is so far covered by AMI), but treatment of the sensor is here included
for completeness.

4.1 The forward model

The radiative intensity, I , at a point in the atmosphere, r, for frequency ν and traversing in
the direction, ψ, depends on a variety of physical processes and continuous variables such
as the temperature profile, T :

I = F (ν, r, ψ, T, . . .) (4.1)

To detect the spectral radiation some kind of sensor, having a finite spatial and frequency
resolution, is needed, and the observed spectrum becomes a vector, y, instead of a contin-
uous function. The atmospheric radiative transfer is simulated by a computer model using
a limited number of parameters as input (that is, a discrete model), and the forward model,
F , used in practice can be expressed as

y = F(xF ,bF) + ε(xε,bε) (4.2)

where xF , bF , xε and bε together give a total description of both the atmospheric and
sensor states, and ε is the measurement errors. The parameters are divided in such way that
x, the state vector, contains the parameters to be retrieved, and the remainder is given by b,
the model parameter vector. The total state vector is

x =

[
xF
xε

]
(4.3)

History
000306 Written by Patrick Eriksson, partly based on Eriksson [1999] and

Eriksson et al. [2000].

34 THEORETICAL FORMALISM

and the total model parameter vector is

b =

[
bF
bε

]
(4.4)

The actual forward model consists of either empirically determined relationships, or numer-
ical counterparts of the physical relationships needed to describe the radiative transfer and
sensor effects. The forward model described here is mainly of the latter type, but some parts
are more based on empirical investigations, such as the parameterisations of continuum ab-
sorption.

Both for the theoretical formalism and the practical implementation, it is suitable to
make a separation of the forward model into two main sections, a first part describing the
atmospheric radiative transfer for pencil beam (infinite spatial resolution) monochromatic
(infinite frequency resolution) signals [Eriksson, 1999],

i = Fr(xr,br) (4.5)

and a second part modelling sensor characteristics,

y = Fs(i,xs,bs) + ε(xε,bε) (4.6)

where i is the vector holding the spectral values for the considered set of frequencies and
viewing angles (ii = I(νi, ψi, . . .), where i is the vector index), and xF and bF are sepa-
rated correspondingly, that is, xTF = [xTr ,x

T
s] and bTF = [bTr ,b

T
s]. The vectors x and b can

now be expressed as

x =

 xr
xs
xε

 (4.7)

and

b =

 br
bs
bε

 , (4.8)

respectively. The subscripts of x and b are below omitted as the distinction should be clear
by the context.

4.2 The sensor transfer matrix

The modelling of the different sensor parts can be described by a number of of analytical
expressions (see Eriksson and Merino [1997]) that together makes the basis for the sensor
model. These expressions are throughout linear operations and it possible, as suggested in
Eriksson et al. [2000], to implement the sensor model as a straightforward matrix multipli-
cation:

y = Hi + ε (4.9)

4.3 WEIGHTING FUNCTIONS 35

where H is here denoted as the sensor transfer matrix. The matrix H can further incorporate
effects of a data reduction and the total transfer matrix is then

H = HdHs (4.10)

as

y = Hdy′ = Hd(Hsi + ε′) = Hi + ε (4.11)

where Hd is the data reduction matrix, Hs the sensor matrix, and y′ and ε′ are the measure-
ment vector and the measurement errors, respectively, before data reduction.

4.3 Weighting functions

4.3.1 Basics

A weighting function is the partial derivative of the spectrum vector y with respect to some
variable used by the forward model. As the input of the forward model is divided between
x or b, the weighting functions are divided correspondingly between two matrices, the state
weighting function matrix

Kx =
∂y
∂x

(4.12)

and the model parameter weighting function matrix

Kb =
∂y
∂b

(4.13)

For the practical calculations of the weighting functions, it is important to note that the
atmospheric and sensor parts can be separated. For example, if x only hold atmospheric
and spectroscopic variables, Kx can be expressed as

Kx =
∂y
∂i

∂i
∂x

= H
∂i
∂x

(4.14)

This equation shows that the new parts needed to calculate atmospheric weighting func-
tions, are functions giving ∂i/∂x where x can represent the vertical profile of a species,
atmospheric temperatures, spectroscopic data etc.

4.3.2 Transformation between vector spaces

It could be of interest to transform a weighting function matrix from one vector space to
another1. The new vector, x′, is here assumed to be of length n (x′ ∈ Rn×1), while the
original vector, x is of length p (x ∈ Rp×1). The relationship between the two vector
spaces is described by a transformation matrix B:

x = Bx′ (4.15)

where B∈Rp×n. For example, if x′ is assumed to be piecewise linear, then the columns of
B contain tenth functions, that is, a function that are 1 at the point of interest and decreases

1This subject is also discussed in Rodgers [2000], published after writing this.

36 THEORETICAL FORMALISM

linearly down to zero at the neighbouring points. The matrix can also hold a reduced set of
eigenvectors.

The weighting function matrix corresponding to x′ is

Kx′ =
∂y
∂x′

(4.16)

This matrix is related to the weighting function matrix of x (Eq. 4.12) as

Kx′ =
∂y
∂x

∂x
∂x′

=
∂y
∂x

B = KxB (4.17)

Note that

Kx′x′ = KxBx′ = Kxx (4.18)

However, it should be noted that this relationship only holds for those x that can be repre-
sented perfectly by some x′ (or vice versa), that is, x = Bx′, and not for all combinations
of x and x′.

If x′ is the vector to be retrieved, we have that [Rodgers, 1990]

x̂′ = I(y, c) = T (x,b, c) (4.19)

where I and T are the inverse and transfer model, respectively.
The contribution function matrix is accordingly

Dy =
∂x̂′

∂y
(4.20)

that is, Dy corresponds to Kx′ , not Kx.
We have now two possible averaging kernel matrices

Ax =
∂x̂′

∂x
=
∂x̂′

∂y
∂y
∂x

= DyKx (4.21)

Ax′ =
∂x̂′

∂x′
=
∂x̂′

∂y
∂y
∂x

∂x
∂x′

= DyKx′ = AxB (4.22)

where Ax ∈ Rp×n and Ax′ ∈ Rp×p, that is, only Ax′ is square. If p > n, Ax gives
more detailed information about the shape of the averaging kernels than the standard matrix
(Ax′). If the retrieval grid used is coarse, it could be the case that Ax′ will not resolve all
the oscillations of the averaging kernels, as shown in Eriksson [1999, Figure 11].

Chapter 5

Description of the atmosphere

FIXME: Patrick: Move parts from chapter 3.1 here

5.1 Atmospheric fields

5.1.1 Gridded Fields

In order to store three-dimensional atmospheric fields along with the atmospheric grids,
the class GField3 was implemented. It resides in the files gridded fields.h and
gridded fields.cc. The reading routine AtmRawRead requires the volume mixing
ratio profiles of all gas species and the altitude and temperature profiles in GField3 for-
mat. The reading routines ParticleTypeAdd and ParticleTypeAddAll require
the particle number density fields in GField3 format.

The GField3 consists of the following fields:

• Vector p grid: Pressure grid [Unit: Pa].

• Vector lat grid: Latitude grid [Unit: ◦].

• Vector lon grid: Longitude grid [Unit: ◦].

• Tensor3 data: Data of the atmospheric field. The dimensions of the Tensor3 are:
[pressure latitude longitude]
The unit is chosen according to the atmospheric field.

History
050913 Created by Claudia Emde. Included GField3 description.

38 DESCRIPTION OF THE ATMOSPHERE

Chapter 6

Gas absorption

6.1 The gas absorption lookup table

6.1.1 Introduction

Calculating gas absorption coefficient spectra in a line by line way is quite an expensive
thing to do. Sometimes contributions from thousands or ten thousands of lines have to be
summed up. To make matters worse, this has to be done over and over again for each point
in the atmosphere.

Actually, the absorption coefficient depends not directly on position, but on the atmo-
spheric state variables:

• Pressure

• Temperature

• Trace gas concentrations

The basic idea of the lookup table is to pre-calculate absorption for discrete combi-
nations of these variables, and then use interpolation to extract absorption for the actual
atmospheric state.

History
2002-06-04 Restarted for ARTS-1-1 by Stefan Buehler.
2003-03-10 Lookup tables added by Stefan Buehler.
2003-03-28 Documentation for WSM abs fieldCalc extended by Stefan Buehler af-

ter comment from Sreerekha T. R..

40 GAS ABSORPTION

Here Unit In ARTS Description

I W
m2 Hz sr

i rte, i field, . . . Intensity

l m Path length element
κi m2 xsec Absorption cross section of absorbing species i
ni m−3 Number density of species i
αi m−1 abs scalar gas Absorption coefficient of absorbing species i
αtotal m−1 Total gas absorption coefficient

Table 6.1: Examples of symbols used in this chapter, the corresponding notation in the
ARTS source code and a short description of the quantity.

6.1.2 Lookup table concept

The fundamental law of Beer1 states that extinction is proportional to the intensity of radi-
ation, and to the amount of absorbing substance:

dI

dl
= −I

∑
i

κini = −I
∑
i

αi = −Iαtotal (6.1)

where the meaning of the symbols is defined in Table 6.
As one can see from the above equation, a large part of the pressure dependence of

αi comes from ni. (If one assumes constant volume mixing ratio of species i, then ni is
proportional to the total pressure according to the ideal gas law.) Therefore, the lookup table
should store κ, rather than α. We then have to worry only about the dependence of κ on the
atmospheric state variables.

Pressure dependence

The pressure dependence is the most important dependence of κ. It comes from the fact that
the width of the line shape functions is governed by pressure broadening. We have to store
the κi on some pressure grid and interpolate if we need them for intermediate values.

Temperature dependence

This is the next effect to take into account. Both the line widths and the line intensities
depend on temperature. Of course, only certain combinations of pressure and temperature
occur in the Earth’s atmosphere. Hence, storing the κi in a two dimensional table as a
function of pressure and temperature would waste a lot of space. Instead, they are stored for
a reference temperature and set of temperature perturbations for each pressure level. E.g.,
if the set of perturbations is [−10, 0, +10], then the κi would be stored for three different
temperatures for each pressure level: [TR(p) − 10 K, TR(p), TR(p) + 10 K], where TR(p)
is the reference temperature for each pressure level.

1According to C. Melsheimer, Beer’s law is: ‘The taller the glass, the darker the brew, the less the amount
of light that comes through’. He might have been quoting someone else, there, but I do not know whom.

6.1 THE GAS ABSORPTION LOOKUP TABLE 41

Trace gas concentration dependence

This is a second order effect. The width of the line depends not only on total pressure, but
also on the partial pressure of one or more trace gases. In theory this is always the case,
because the broadening is different for each combination of collision partners. However, in
practice trace gas concentrations in the Earth’s atmosphere are normally so low that this can
be safely neglected. An important exception is water vapor in the lower troposphere, which
can reach quite high volume mixing ratios. Therefore, the effect of water vapor mixing ratio
on water vapor absorption (self broadening), as well as on oxygen absorption (according to
a parameterization by Rosenkranz [1993]) may not be negligible.

This is handled by storing perturbations, similar to the temperature case. The user can
select for which species perturbations should be stored. (The so called ‘nonlinear species’.)

This feature is not yet used. FIXME: Update this when it works.

6.1.3 Implementation

The gas absorption lookup table is implemented by the class GasAbsLookup, which re-
sides in the files gas abs lookup.cc and gas abs lookup.h.

Lookup table structure

Below you find the actual declaration of the class GasAbsLookup with extensive comments.

//! An absorption lookup table.
/*! This class holds an absorption lookup table, as well as all

information that is necessary to use the table to extract
absorption. Extraction routines are implemented as member
functions. */

struct GasAbsLookup {
public:
// Documentation is with the implementation!
void Adapt(const ArrayOfArrayOfSpeciesTag& current_species,

ConstVectorView current_f_grid);

// Documentation is with the implementation!
void Extract(Matrix& sga,

const Index& f_index,
const Numeric& p,
const Numeric& T,

ConstVectorView abs_vmrs) const;

// Obsolete try for a function to extract for the entire field:
// void Extract(Tensor5View sga,
// const Index& f_index,
// ConstVectorView p,
// ConstTensor3View T,
// ConstTensor4View abs_vmrs) const;

// IO functions must be friends:
friend void xml_read_from_stream(istream& is_xml,

GasAbsLookup& gal,
bifstream *pbifs);

friend void xml_write_to_stream (ostream& os_xml,

42 GAS ABSORPTION

const GasAbsLookup& gal,
bofstream *pbofs);

private:

//! The species tags for which the table is valid.
ArrayOfArrayOfSpeciesTag species;

//! The species tags with non-linear treatment.
/*! This must be inside the range of species. If nonlinear_species
is an empty vector, it means that all species should be treated
linearly. (No absorption for perturbed species profiles is
stored.) */

ArrayOfIndex nonlinear_species;

//! The frequency grid [Hz].
/*! Must be sorted in ascending order. */
Vector f_grid;

//! The pressure grid for the table [Pa].
/*! Must be sorted in decreasing order. */
Vector p_grid;

//! The reference VMR profiles.
/*! The VMRs for all species, associated with p_grid. Dimension:
[n_species, n_p_grid]. These VMRs are needed to scale the
absorption coefficient to other VMRs. We are never working with
"absorption cross-sections", always with real absorption
coefficients, so we have to remember the associated VMR values.

Physical unit: Absolute value. */
Matrix vmrs_ref;

//! The reference temperature profile [K].
/*! This is a temperature profile. The dimension must be the same as
p_grid. */

Vector t_ref;

//! The vector of temperature perturbations [K].
/*! This can have any number of elements. Example:
[-20,-10,0,10,20]. The actual temperatures for which absorption is
stored are t_ref + t_pert for each level. The reference
temperature itself should normally also be included, hence
t_pert should always include 0. Must be sorted in ascending order!

The vector t_pert may be an empty vector (nelem()=0), which marks
the special case that no interpolation in temperature should be
done. If t_pert is not empty, you will get an error message if you
try to extract absorption for temperatures outside the range of
t_pert. */

Vector t_pert;

//! The vector of perturbations for the VMRs of the nonlinear species.
/*!
These apply to all the species that have been set as

6.1 THE GAS ABSORPTION LOOKUP TABLE 43

nonlinear_species.

Fractional units are used! Example: [0,.5,1,10,100],
meaning from VMR 0 to 100 times the profile given in
abs_vmrs. The reference value should normally be included, hence
nls_pert should always include the value 1.

If nonlinear_species is an empty vector, it means that there are
no nonlinear species. Then nls_pert must also be an empty vector.

*/
Vector nls_pert;

//! Absorption cross sections.
/*!
Physical unit: mˆ2

\attention We want to interpolate these beasts in pressure. To
keep interpolation errors small it is better to store
cross-sections, not coefficients. The absorption coefficient alpha
is given by alpha = xsec * n, where n is the number density.

Dimension: [a, b, c, d]

Simplest case (no temperature perturbations,
no vmr perturbations):

a = 1

b = n_species

c = n_f_grid

d = n_p_grid

Standard case (temperature perturbations,
but no vmr perturbations):

a = n_t_pert

b = n_species

c = n_f_grid

d = n_p_grid

Full case (with temperature perturbations
and vmr perturbations):

a = n_t_pert

b = n_species + n_nonlinear_species * (n_nls_pert - 1)

c = n_f_grid

d = n_p_grid

Note that the last three dimensions are identical to the
dimensions of abs_per_tg in ARTS-1-0. This should simplify
computation of the lookup table with this old ARTS version.

*/
Tensor4 xsec;

};

Workspace variables and methods

The lookup table itself is stored in the WSV abs lookup. After loading (with ReadXML),
it is important that one calls the WSM abs lookupAdapt. This will make sure that

44 GAS ABSORPTION

the lookup table agrees exactly with your calculation. For example, it has to check that
the frequencies that you want to use are included in the set of frequencies for which the
table has been calculated. There is no interpolation in frequency! This is on purpose,
because the gas absorption spectrum is the quantity that changes most rapidly as a function
of frequency. Frequency interpolation here would be stupid and dangerous. The method
also sorts the species in exactly the same way that they occur in your calculation. It sets the
WSV abs lookup is adapted to flag that the table is now ok.

When the table has been successfully adapted, one can extract absorption coefficients
with the WSM abs scalar gasExtractFromLookup. This will extract absorption
coefficients, i.e., the cross sections stored in the table are not only interpolated to the de-
sired atmospheric conditions, but are also multiplied with the partial number density of the
present absorbers.

The abs scalar gasExtractFromLookup method is meant to be used inside
the agenda abs scalar gas agenda, which is used in several places where absorption
coefficients are needed, both inside the scattering box and outside.

It is also possible to calculate absorption for the entire atmospheric field. This is done
by the method abs fieldCalc, which is useful in two different contexts:

1. For testing and plotting gas absorption. (For RT calculations, gas absorption is cal-
culated or extracted locally, therefore there is no need to calculate a global field. But
this method is handy for easy plotting of absorption vs. pressure, for example.)

2. Inside the scattering region, monochromatic absorption is pre-calculated for the en-
tire atmospheric field. FIXME: At least that’s the plan, isn’t it Claudia? Please
remove this FIXME when that works.

Because of the different usage contexts, the method abs fieldCalc can calculate
absorption either for all frequencies in the frequency grid (input variable f index<0), or
just for the frequency indicated by the input variable f index (f index>=0).

The following controlfile section illustrates the use of the lookup table together with
abs fieldCalc. This is not a complete controlfile. FIXME: Eventually there should
be a good complete example in doc/examples. For the moment you can look at the
examples in sbuehler/arts calc/abs lookup 2/.

Read lookup table:
ReadXML(abs_lookup, "some_table.xml")

Adapt lookup table:
abs_lookupAdapt

Set agenda for extracting absorption
AgendaSet(abs_scalar_gas_agenda){

abs_scalar_gasExtractFromLookup
}

Input to abs_scalar_gasExtractFromLookup{},
means to calculate all frequencies.

6.1 THE GAS ABSORPTION LOOKUP TABLE 45

IndexSet(f_index, -1)

Calculate scalar gas absorption field. (This assumes that
also the WSVs f_grid, atmosphere_dim, p_grid, lat_grid,
lon_grid, t_field, and vmr_field have been defined.)
abs_fieldCalc

Write out the field:
WriteXML("ascii", abs_field, "")

Use the online documentation for the methods and variables mentioned to learn more.

46 GAS ABSORPTION

Chapter 7

Propagation paths and the geoid

A propagation path is the way the radiation travels to reach the sensor for a specified line-
of-sight. A general description of propagation paths is given in Section 3.5.2 and it can
be a good idea to read that section before continuing here. This section describes how
propagation paths are described and calculated. In addition, at the end of the section some
geodetic issues are discussed, such as the choice of reference ellipsoid for the geoid.

7.1 Implementation files

Variables and functions related to propagation paths are defined in the files:

• ppath.h
• ppath.cc
• m ppath.cc

• m atmosphere.cc

The first file, ppath.h, contains the definition of the structure to describe propagation
paths, Ppath. The second file, ppath.cc, contains functions to perform calculations
to determine propagation paths. The third file, m ppath.cc, contains the workspace
methods related to propagation paths, but these methods mainly check the input and
the actual calculations are performed by sub-functions in ppath.cc. The fourth file,
m atmosphere.cc, contains methods to set the geoid radius.

7.2 Calculation approach

The propagation paths are calculated in steps, as outlined below in this section. The path
steps are normally from one crossing of the atmospheric grids to next. This solution is

History
050613 Some new features described by Patrick Eriksson.
030310 First complete version written by Patrick Eriksson.

48 PROPAGATION PATHS AND THE GEOID

Figure 7.1: Tracking of propagation paths. For legend, see Figure 7.2. The figure tries
to visualize how the calculations of propagation paths are performed from one grid cell to
next. In this example, the calculations start directly at the sensor position (∗) as it placed
inside the model atmosphere. The circles give the points defining the propagation path. Path
points are always included at the crossings of the grid cell boundaries. Such a point is then
used as the starting point for the calculations inside the next grid cell.

necessary to allow that the same code is used throughout the program. To introduce prop-
agation paths steps was necessary to handle the iterative solution for scattering inside the
cloud box, as made clear from Figure 13.2.

A full propagation path is stored in the workspace variable ppath, that is of the type
Ppath (see Section 7.3). The paths are determined by calculating a number of path
steps. A path step is the path from a point to the next crossing of either the pressure,
latitude or longitude grid (Figure 7.1). There is one exception to this definition of a path
step, and that is when there is an intersection with the surface, which ends the propaga-
tion path at that point. The starting point for the calculation of a path step is normally a
grid crossing point, but can also be an arbitrary point inside the atmosphere, such as the
sensor position. Only points inside the model atmosphere are handled. The path steps
are stored in the workspace variable ppath step, that is of the same type as ppath.
The path steps are calculated by an agenda called ppath step agenda. Example on
methods that can be used in ppath step agenda are ppath stepGeometric and
ppath stepRefractionEuler.

Propagation paths are calculated with the workspace method ppathCalc. The com-
munication between this method and ppath step agenda is handled by ppath step.
That variable is used both as input and output to ppath step agenda. The agenda gets
back ppath step as returned to ppathCalc and the last path point hold by the structure
is accordingly the starting point for the new calculations. If a total propagation path shall
be determined, the agenda is called repeatedly until the starting point of the propagation
path is found and ppath step will hold all path steps that together make up ppath. The

7.2 CALCULATION APPROACH 49

Grid cells
Sensor position
Propagation path
Tangent point

Figure 7.2: As Figure 7.1, but with a length criterion for the distance between the points
defining the path. The inclusion of the tangent point is not a result of this length criterion,
it is always included among the path points.

starting point is included in the returned structure.
The path is determined by starting at the end point and moving backwards to the starting

point. The calculations are initiated by filling ppath step with the practical end point of
the path. This is either the position of the sensor (true or hypothetical), or some point at
the top of the atmosphere (determined by geometrical calculations starting at the sensor).
This initialization is not handled by ppath step agenda. The field constant is set
by ppathCalc to the correct value if the sensor is above the model atmosphere. Other-
wise, the field is set to be negative and is corrected by ppath step agenda at the first
call. This procedure is needed as the propagation path constant changes if refraction is
considered, or not, when the sensor is placed inside the atmosphere.

The agenda performs only calculations to next crossing of a grid, all other tasks are
performed by ppathCalc, with one exception. If there is an intersection with the sur-
face, the calculations stop at this point. This is flagged by setting the background field of
ppath step. Beside this, ppathCalc checks if the starting point of the calculations is
inside the scattering box or below the surface level, and check if the last point of the path
has been reached.

The ppath step agenda put in points along the propagation path at all crossings
with the grids, tangent points and points of surface reflection. Additional points can be
included in the propagation paths. For example, an upper distance between the points defin-
ing the path can be set for ppath stepGeometric by the generic input lmax (see
Figure 7.2).

In many cases the propagation path can/must be considered to consist of several parts.
One exemple is surface reflection (see Figure 3.9). The variable ppath describes then only
a single part of the propagation path, while the complete path is put into ppath array.
The part closest to the sensor is first in this array (index 0). The order of the following parts
is described by the next parts field of the Ppath structure (see below).

50 PROPAGATION PATHS AND THE GEOID

7.3 The propagation path data structure

A propagation path is represented by a structure of type Ppath. This structure holds also
auxiliary variables to facilitate the radiative transfer calculations and to speed up the in-
terpolation. The fields of Ppath are described below, where the data type is given inside
square brackets.

dim [Index] The atmospheric dimensionality. This field shall always be equal to the
workspace variable atmosphere dim.

np [Index] Number of positions to define the propagation path. Allowed values are ≥ 0.
The number of rows of pos and los, and the length of z, gp p, gp lat and
gp lon, shall be equal to np. The length of l step is np - 1. If np ≤ 1, the
observed spectrum is identical to the radiative background. For cases where the sen-
sor is placed inside the model atmosphere and np = 1, the stored position is identical
to the sensor position and that position can be used to determinate the radiative back-
ground (see below).

refraction [Index] A flag (0 or 1) to indicate if refraction has been considered when deter-
mining the path. A value of 1 means that refraction has been considered.

method [String] A string describing the calculation approach. For example, ’1D basic
geometrical’.

constant [Numeric] The propagation path constant. Such a constant can be assigned to all
geometrical paths and for 1D cases (with or without refraction). See Sections 7.6 and
[**]. This field can be initiated to a negative value to indicate that the constant is un-
defined or not yet set. For cases where the constant applies, ppath step agenda
sets this constant at the first call of the agenda if the given value is negative.

pos [Matrix] The position of the propagation path points. This matrix has np rows and up
to 3 columns. Each row holds a position where column 1 is the radius, column 2 the
latitude and column 3 the longitude (cf. Section 3.4.1). The number of columns for
1D and 2D is 2, while for 3D it is 3. The latitudes are stored for 1D cases as these
can be of interest for some applications and are useful if the propagation path shall
be plotted. The latitudes for 1D give the angular distance to the sensor (see further
Section 3.1.1).

The propagation path is stored in reversed order, that is, the position with index 0
is the path point closest to the sensor (and equals the sensor position if it is inside
the atmosphere). The full path is stored also for 1D cases with symmetry around a
tangent point (in contrast to ARTS-1).

z [Vector] The geometrical altitude for each path position. The length of this vector is
accordingly np. This is a help variable for plotting and similar purposes. It shall
not be used to interpolate the atmospheric fields, as pressure is the main altitude
coordinate.

7.3 THE PROPAGATION PATH DATA STRUCTURE 51

l step [Vector] The length along the propagation path between the positions in pos. The
first value is the length between the first and second point etc. For np ≥ 2, the length
of the vector is np - 1. Otherwise it is 0.

gp p [ArrayOfGridPos] Index position with respect to the pressure grid. The structure for
grid positions is described in Section 18.3.

gp lat [ArrayOfGridPos] As gp p but with respect to the latitude grid.

gp lon [ArrayOfGridPos] As gp p but with respect to the longitude grid.

los [Matrix] The line-of-sight of the propagation path at each point. The number of rows of
the matrix is np. For 1D and 2D, the matrix has a single column holding the zenith
angle. For 3D there is an additional column giving the azimuth angle. The zenith and
azimuth angles are defined in Section 3.4.2. If the radiative background is the cloud
box, the last position (in pos) and line-of-sight give the relevant information needed
when extracting the radiative background from the cloud box intensity field.

background [String] The radiative background for the propagation path. The possible
options for this field are ’space’, ’blackbody surface’, ’cloud box interior’ and ’cloud
box surface’, where the source of radiation should be clear the content of the strings.

tan pos [Vector] The position of the tangent point. This vector is only set if there exists a
tangent point (above the surface level), the length of the vector is otherwise 0. The
tangent point is defined as the point with the lowest radius along the path. This means
that (the absolute value of) the zenith angle at the tangent point is always 90◦. For 2D
and 3D this point can deviate from the point with lowest geometrical altitude.

geom tan pos [Vector] The position of the geometrical tangent point. This vector is
set for all downward observations. Refraction and surface reflections are ne-
glected when calculating this tangent point position. This field is not handled by
ppath step agenda. Definition of the tangent point as for tan pos.

The fields above are set as when the propagation path is determined (in-
side(ppath calc). Remaining fields, listed below, are set at a later stage:

p [Vector] The pressure for each path position. Length is accordingly np. Set by iy calc.

t [Vector] The temperature for each path position. Length is accordingly np. Set by
iy calc.

vmr [Matrix] The VMR of each gas species at each path position. Set by iy calc.

next parts [ArrayOfIndex] The index in ppath array of following propagation path
parts. Not defined for individual propagation paths. A negative value means that there
is no following part. Set by functions where new propagation path are calculated, such
as surfaceCalc.

52 PROPAGATION PATHS AND THE GEOID

Algorithm 2 Outline of the function ppath calc.
check consistency of function input
call ppath start stepping to set ppath step
create an array of Ppath structures, ppath array
add ppath step to ppath array
while radiative background not reached do

call ppath step agenda
if path is at the highest pressure surface then

radiative background is space
else if path is at either end point of latitude or longitude grid then

this is not allowed, issue an runtime error
end if
if cloud box is active then

if path is at the surface of the cloud box then
radiative background is the cloud box surface

end if
end if
add ppath step to ppath array

end while
initialize the WSV ppath to hold found number of path points
copy data from ppath array to ppath

7.4 Structure of implementation

The workspace method for calculating propagation paths is ppathCalc, but this is just a
getaway function for ppath calc. The main use of ppathCalc is to debug and test the
path calculations, and that WSM should normally not be part of the control file. Propagation
paths, or steps, are generated from inside other functions.

7.4.1 Main functions for clear sky paths

The master function to calculate full clear sky propagation paths is ppath calc.
This function is outlined in Algorithm 2. The function can be divided into three
main parts, initialization (handled by ppath start stepping), a repeated call of
ppath step agenda and putting data into the return structure (ppath).

The main task of the function ppath start stepping is to set up ppath step
for the first call of ppath step agenda, which means that the practical starting point
for the path calculations must be determined. If the sensor is placed inside the model at-
mosphere, the sensor position gives directly the starting point. For cases when the sensor
is found outside the atmosphere, the point where the path exits the atmosphere must be de-
termined. The exit point can be determined by pure geometrical calculations (see Sections
7.6 and 7.7) as the refractive index is assumed to have the constant value of 1 outside the
atmosphere. The problem is accordingly to find the geometrical crossing between the limit
of the atmosphere and the sensor line-of-sight (LOS). The function performs further some
other tasks, which include:

7.4 STRUCTURE OF IMPLEMENTATION 53

• For all LOS with a zenith angle ≥ 90◦ the position of the geometrical tangent point
is calculated.

• If the sensor is placed inside the model atmosphere

– Checks that the sensor is placed above the surface level. If not, an error is issued.

– Checks for 2D and 3D and when the sensor position as at an end point of the lat-
itude or longitude grid, that the LOS is inwards with respect to the atmospheric
limit.

– If the sensor and surface altitudes are equal, and the sensor LOS is downward,
the radiative background is set to be the surface. For 2D and 3D, the tilt of the
surface radius is considered when determining if the LOS is downward.

– If the cloud box is active and the sensor position is inside the cloud box, the
radiative backsurface is set to be “cloud box interior”. All sensor positions on
the cloud box surface are for 2D and 3D treated as points inside the box (for
simplicity reasons), while for 1D the behavior is as expected.

• If the sensor is placed outside the model atmosphere

– Checks that the zenith angle is ≥ 90◦. Upward observations are here not al-
lowed.

– If it is found for 2D and 3D that the exit point of the path not is at the top of the
atmosphere, but is either at a latitude or longitude end face of the atmosphere,
an error is issued. This problem can not appear for 1D.

For further details, see the code.

7.4.2 Main functions for propagation path steps

Example on workspace methods to calculate propagation path steps are
ppath stepGeometric and ppath stepRefractionEuler. All such methods
adapt automatically to the atmospheric dimensionality, but the different dimension-
alities are handled by separate internal functions. For example, the sub-functions to
ppath stepGeometric are ppath step geom 1d, ppath step geom 2d and
ppath step geom 3d. See m ppath.cc to get the names of the sub-functions for
other propagation path step workspace methods. The variables to describe the atmosphere
are compacted for 1D and 2D when handed over to atmospheric dimensionality specific
sub-functions. For example, the variable in ppath step geom 2d for the geoid radius
is a vector, while the workspace variable is a matrix.

Many tasks are independent of the algorithm for refraction that is used, or if refrac-
tion is considered at all. These tasks are solved by two functions for each atmospheric
dimensionality. For 1D the functions are ppath start 1d and ppath end 1d, and the
corresponding functions for 2D and 3D are named in the same way. The functions to cal-
culate geometrical path steps are denoted as do gridrange 1d, do gridcell 2d and
do gridcell 3d. Paths steps passing a tangent point are handled by a recursive call of
the step function. Algorithm 3 summerizes this for geometrical 2D steps.

54 PROPAGATION PATHS AND THE GEOID

Algorithm 3 Outline of the function ppath step geom 2d.
call ppath start 2d
if ppath step.ppc < 1 then

calculate the path constant (this is then first path step)
end if
call do gridcell 2d
call ppath end 2d
if calculated step ends with tangent point then

call ppath step geom 2d with temporary Ppath structure
append temporary Ppath structure to ppath step

end if

7.5 General comments

The calculation of propagation paths involves a number of mathematical expressions and
they are presented in Sections 7.6 - 7.8. In addition, the path calculations present a number
of practical problems. These practical problems are discussed briefly in this section. For
further details, see the code.

7.5.1 Numerical precision

The aim here is not to make a complete discussion around the limited numerical accuracy,
but just to point out some of the problems caused. We can start by noticing that the precision
with which atmospheric positions can be given is about 0.5 m when the numeric type is float
and 2·10−8 m for double (assuming that the mantissa has 24 and 48 bits, respectively). The
numbers given correspond to the change of the position for a change of 1 bit, in either radius,
latitude and longitude. Already these numbers cause problems for the approach taken to
calculate propagation paths. For any path along the border of a grid cell, any rounding error
in the wrong direction will move the position outside the grid cell, which would lead to a
crash of the code without countermeasures.

The values above give the representation precision. The precision will be even poorer
if a position is obtained by calculations as numerical problems tend to accumulate. The
calculation precision depends on what mathematical expressions that are involved. For
example, a radius or length obtained by the Pythagorean relation will have a relatively high
uncertainty as the calculations involve taking the square of a radius in the order of 6400 km.
It was found that for calculations performed using only float as numeric type, could lead to
displacements from the true position up to 10 m. It was first tried to hard-code double as
the numerical type for the most critical passages of the calculations, but a total success was
not achieved and some code had to be duplicated (to be used with either the float or double
option by if-statements for the pre-compiler) to avoid compiler warnings. A step further
was then taken, and double is now hard-coded for all internal variables of ppath.cc. This
deviation from the rule to have an uniform numeric type inside ARTS was introduced to
avoid more complicated coding and it has a very small impact on the overall calculation
speed. However, this measure will not lead to that the precision of the path calculations
will be the same for float and double, as the results will be converted to float between each
propagation path step when copied to ppath step.

7.5 GENERAL COMMENTS 55

As pointed out above, the most critical cases are when the path goes along the boundary
of a grid cell. This situation is not common for arbitrary observation positions, but it is a
standard case for 3D scattering calculations as the starting point for the calculations there
is always a crossing point of the atmospheric grids. The solution to this problem is to
introduce special treatment for such geometrical paths. For strictly vertical 2D and 3D
paths, the latitude, and also longitude for 3D, of the start and end points shall be identical.
Paths in 3D with an azimuth angle of 0◦or 180◦ have a constant longitude; the paths are in
the north-south plane, and this should also then be valid for the longitude value of the start
and end positions of the path step.

The variables connected to different problems associated with the numerical inaccuracy
and singularity of mathematical expressions are defined at the top of the file ppath.cc.
The variables include the accepted tolerance when making asserts in internal functions that
the given point is inside the specified grid cell. Another example is the latitude limit to use
the special mathematical expressions needed for positions on the poles.

7.5.2 Propagation paths and grid positions

The grid positions are calculated on the same time as the path is determined. The main
reason to this is that the grid positions make it possible to quickly determine inside which
grid box the path step is found. Without the grid positions, each call of the functions would
need a costly search to locate the starting position with respect to the grids. If you are not
familiar with grid positions, it is recommended to read Section 18 before you continue here.

The limited numerical accuracy requires some care when setting the grid positions.
First of all, rounding errors can give a fractional distance < 0 or > 1 and this must be
avoided. The function gridpos check fd was created for this purpose, and should
be called for each grid position. This function just sets all values below 0 to 0 and all
value above 1 to 1. In addition, the grid position for the end point of a path step (beside
when there is an intersection with the ground) must have one fractional distance of exactly
0 or 1, but this is not ensured by gridpos check fd and for end points the function
gridpos force end fd shall also be called.

Some care is needed to determine in which grid range a path step is found. First of all,
there exists an ambiguity for the fractional distance at the grid points. It can either be 0
or 1. In addition, if a position is exactly on top of a grid point, the observation direction
determines the interesting grid range. As an help to resolve these question there is the func-
tion gridpos2gridrange. This function takes an argument describing the direction of
the line-of-sight with respect to the grids. This argument shall be set to 1 if the viewing
direction is towards higher indexes. The direction argument can be set with the following
logical expressions, for the different combinations of atmospheric dimensionality and grid
of interest:

1D-3D, pressure: |ψ| ≤ 90◦

2D, latitude: ψ ≥ 0◦

3D, latitude: ω ≤ 90◦

3D, longitude: ω ≥ 0◦

56 PROPAGATION PATHS AND THE GEOID

r2

ψ2
l

line−of−sight

r1

1
∆l

∆α

ψ Figure 7.3: The radius (r) and
zenith angle (ψ) for two points
along the propagation path, and
the distance along the path (∆l)
and the latitude difference (∆α)
between these points.

7.6 Some basic geometrical relationships for 1D and 2D

This section gives some expressions to determine positions along a propagation path when
refraction is neglected. The expressions deal only with propagation path inside a plane,
where the latitude angle is the angular distance from an arbitrary point. This means that the
expressions given here can be directly applied for 1D and 2D. Some of the expression are
also of interest for 3D. The ARTS method for making the calculation of concern is given
inside parenthesis above each equation, if not stated explicitly. A part of a geometrical
propagation path is shown in Figure 7.3.

The law of sines gives that the product must r sin(ψ) be constant along the propagation
path:

pc = r sin(ψ) (7.1)

where the absolute value is taken for 2D zenith angles as they can for such cases be negative.
The propagation path constant, pc, is determined by the position and line-of-sight of the
sensor, a calculation done by the function geometrical ppc. The constant equals also
the radius of the tangent point of the path (that is found along an imaginary prolongation of
the path behind the sensor if the viewing direction is upwards). The expressions below are
based on pc as the usage of a global constant for the path should decrease the sensitivity to
numerical inaccuracies. If the calculations are based solely on the values for the neighboring
point, a numerical inaccuracy can accumulate when going from one point to next. The
propagation path constant is stored in the field constant of ppath and ppath step.

The relationship between the distance along the path for an infinitesimal change in ra-
dius is here denoted as the geometrical factor, g. If refraction is neglected, valid expressions
for the geometrical factor are

g =
dl
dr

=
1

cos(ψ)
=

1√
1− sin2(ψ)

=
r√

r2 − p2
c

(7.2)

For the radiative transfer calculations, only the distance between the points, ∆l, is of inter-
est, but for the internal propagation path calculations the length from the tangent point (real

7.6 SOME BASIC GEOMETRICAL RELATIONSHIPS FOR 1D AND 2D 57

or imaginary), l, is used. By integrating Equation 7.2, we get that (geomppath l at r)

l(r) =
√
r2 − p2

c (7.3)

As refraction is here neglected, the tangent point, the point of concern and the center of the
coordinate system make up a right triangle and Equation 7.3 corresponds to the Pythagorean
relation where pc is the radius of the tangent point. The distance between two points (∆l)
is obtained by taking the difference of Equation 7.3 for the two radii.

The radius for a given l is simply (geomppath r at l)

r(l) =
√
l2 + p2

c (7.4)

The radius for a given zenith angle is simply obtained by rearranging Equation 7.1
(geomppath r at za)

r(ψ) =
pc

sin(ψ)
(7.5)

The zenith angle for a given radius is (geomppath za at r)

ψ(r) =

180− sin−1(pc/r) for 90◦ < ψa ≤ 180◦

sin−1(pc/r) for 0◦ ≤ ψa ≤ 90◦

− sin−1(pc/r) for − 90◦ ≤ ψa < 0◦

sin−1(pc/r)− 180 for − 180◦ ≤ ψa < −90◦
(7.6)

where ψa is any zenith angle valid for the path on the same side of the tangent point. For
example, for a 1D case, the part of the path between the tangent point and the sensor has
zenith angles 90◦ < ψa ≤ 180◦.

The latitude for a point (geomppath lat at za) is most easily determined by its
zenith angle

α(ψ) = α0 + ψ0 − ψ (7.7)

where ψ0 and α0 are the zenith angle and latitude of some other point of the path. Equa-
tion 7.7 is based on the fact that the quantities ψ1, ψ2 and ∆α fulfill the relationship

∆α = ψ1 − ψ2, (7.8)

this independently of the sign of the zenith angles. The definitions used here result in that
the absolute value of the zenith angle always decreases towards zero when following the
path in the line-of-sight direction, that is, when going away from the sensor. It should then
be remembered that the latitudes for 1D measures the angular distance to the sensor, and for
2D a positive zenith angle means observation towards higher latitudes.

The radius for a given latitude (geomppath r at lat) is obtained by combining
Equations 7.7 and 7.5.

58 PROPAGATION PATHS AND THE GEOID

7.7 Calculation of geometrical propagations paths

This section describes the calculation of geometrical propagation paths for different atmo-
spheric dimensionalities. That is, the effect of refraction is neglected. These calculations
are performed by the workspace method ppath stepGeometric. This method, as all
methods for propagation path steps, adjust automatically to the atmospheric dimensionality,
but the actual calculations are performed a sub-function for each dimensionality.

7.7.1 1D

The core function for this case is do gridrange 1d. The lowest and highest radius value
along the path step is first determined. If the line-of-sight is upwards (‖ψ| ≤ 90◦), then
the start point of the step gives the lowest radius, and the radius of the pressure surface
above gives the highest value. In the case of a downwards line-of-sight, the lowest radius
is either the tangent point, the pressure surface below or the surface. The needed quantities
to describe the propagation path between the two found radii are calculated by the func-
tion geompath from r1 to r2, that has the option to introduce more points to fulfill a
length criterion between the path points. The mathematics of geompath from r1 to r2
are given by Equations 7.1 - 7.7.

7.7.2 2D

The definitions given in Sections 3.1.1 results in that for a 2D case the radius of a pressure
surface varies linearly from one point of the latitude grid to next. This is the main additional
problem to solve, compared to the 1D case. Figure 7.4 gives a schematic description of the
problem at hand, which is handled by the internal function psurface crossing 2d.

The law of sine gives the following relationship for the crossing point:

sin Θp

r0 + cα
=

sin(π − α−Θp)
rp

(7.9)

which can be re-written to

rp sin(Θp) = (r0 + cα)(sin Θp cosα+ cos Θp sinα) (7.10)

This equation has no analytical solution. A first step to find an approximative solution is to
note that α will be limited to relatively small values. For example, if it shall be possible for
the angular distance α to reach the value of 3◦, the vertical spacing between the pressure
surfaces must be about 8 km, while it normally is below 2 km. For angles α ≤ 3◦, the sine
and cosine terms can be replaced with the two first terms of their Taylor expansions with a
relative accuracy of < 4 · 10−7. That is,

cosα ≈ 1− α2/2
sinα ≈ α− α3/6

Equation 7.10 becomes with these replacements a polynomial equation of order 4:

0 = p0 + p1α+ p2α
2 + p3α

3 + p4α
4 (7.11)

p0 = (r0 − rp) sin Θp

7.7 CALCULATION OF GEOMETRICAL PROPAGATIONS PATHS 59

α

r

r

r

p

θp

0

0 αr = r + c

Figure 7.4: Quantities used to describe how to find
the crossing between a geometrical propagation
path and a tilted pressure surface. The angle α
is the angular distance from a reference point on
the path. The problem at hand is to find α for the
crossing point. The radius of the pressure surface
at α = 0 is denoted as r0. The tilt of the pressure
surface is c.

p1 = r0 cos Θp + c sin Θp

p2 = −(r0 sin Θp)/2 + c cos Θp

p3 = −(r0 cos Θp)/6− (c sin Θp)/2
p4 = −(c cos Θp)/6

This equation is solved numerically with the root finding algorithm implemented in the
function poly root solve. Solutions of interest shall not be imaginary.

Geometrical 2D propagation path steps are determined by do gridcell 2d. This
function uses psurface crossing 2d to calculate the latitude distance to a crossing of
the pressure surface below and above the present path point. If the closest crossing point
with the pressure surfaces is outside the latitude range of the grid cell, it is the crossing of
the path with the end latitude (in the viewing direction) that is of interest (Figure 7.5).

7.7.3 3D

Geometrical 3D propagation path steps are determined by the function do gridcell 3d.
It was first tested to use different analytical expressions to calculate the length between
a point and the crossing of some radius, latitude or longitude. However, the expressions
found include the trigonometric functions and the squaring of radii, which resulted in a high
sensitivity to the numerical inaccuracy. It was found that the numerical problems made the
created algorithm impossible to use in practice. Equation 7.20 below is a reminiscence of
that work. In addition, no simple solution to the problem of finding the crossing with a tilted
3D pressure surface using the analytical expressions was found.

A straightforward trail-and-error algorithm was then tested (Algorithm 4 and Fig-
ure 7.6). The main advantage of the algorithm is that a correction for the shift in position

60 PROPAGATION PATHS AND THE GEOID

Figure 7.5: Example on propagation path steps starting from a latitude end face (solid lines),
or the lower pressure surface (dashed lines), to all other grid cell faces. The distortion of
the grid cell from cylinder segment is highly exaggerated compared to a real case. The rela-
tionship between vertical and horisontal size deviates also from normal real cases. Typical
values for the vertical extension is around 500 m, while the horisontal length is normally
> 10 km.

caused by the transformations back and fourth to a cartesian coordinate system can be ap-
plied. The correction term assures that the position is not changed for a step of zero length,
and is not moved outside the grid cell due to the numerical problems. The algorithm was
further found to be sufficiently fast to be accepted. A simple bisection search to find the
length of the propagation path step is used. Both the position and the line-of-sight for the
other end point of the path step are calculated using a transformation to cartesian coordi-
nates. The cartesian coordinate system used here is defined as:

x-axis is along latitude 0◦and longitude 0◦

y-axis is along latitude +90◦

z-axis is along latitude 0◦and longitude +90◦

This definition results in the following relationships between the spherical (r, α, β) and
cartesian (x, y, z) coordinates

x = r cos(α) cos(β)
y = r sin(α) (7.12)

z = r cos(α) sin(β)

and

r =
√
x2 + y2 + z2

α = arcsin(y/r) (7.13)

β = arctan(z/x) (implemented by the atan2 function)

7.7 CALCULATION OF GEOMETRICAL PROPAGATIONS PATHS 61

Algorithm 4 The method applied in do gridcell 3d to find the total length of the path
step to be calculated. The symbol S signifies here conversion from cartesian to spherical
coordinates (Equation 7.13).

calculate the spherical position (x0, y0, z0) and LOS vector (dx,dy,dz)
calculate (rc, αc, βc) = S(x0, y0, z0)− (r0, α0, β0), the position correction term
set lin = 0
set lout = 1
if LOS is downwards then

calculate length to the tangent point, ltan
else

set ltan = 99 · 106 m
end if
while S(x0 + loutdx, y0 + loutdy, z0 + loutdz)− (rc, αc, βc) is inside grid cell do

if lout < ltan and 10lout > ltan then
lout = ltan (to assure that tangent point is included in search)

else
lout ← 10 ∗ lout

end if
end while
set lend = (lin + lout)/2
set accuracy flag to false
while accuracy flag is false do

calculate (r, α, β) = S(x0 + lenddx, y0 + lenddy, z0 + lenddz)− (rc, αc, βc)
if (r, α, β) is inside grid cell then
lin = lend

else
lout = lend

end if
if (lout − lin) smaller than specified accuracy then

set accuracy flag to true
else
lend = (lin + lout)/2

end if
end while
(r, α, β)← (r, α, β) + (rc, αc, βc)

The functions performing these transformations are sph2cart and cart2sph.
The first step to transform a line-of-sight, given by the zenith (ψ) and the azimuth (ω)

angle, to cartesian coordinates is to determine the corresponding vector with unit length in
the spherical coordinate system: dr

dα
dβ

 =

 cos(ψ)
sin(ψ) cos(ω)/r

sin(ψ) sin(ω)/(r cos(α))

 (7.14)

62 PROPAGATION PATHS AND THE GEOID

l
inl

endl
out
i+2

l
out
i+1

l
out
i

Figure 7.6: Schematic of Algorithm 4. The figure shows two iterations of the algorith to
search for the total length of the path step. The asterisk (∗) gives the start point for the
calculations and the circles (◦) are the final end points of the path step. The plus signs (+)
shows the position of the different lengths tested during the iterations.

This vector is then translated to the cartesian coordinate system as dx
dy
dz

 =

 cos(α) cos(β) −r sin(α) cos(β) −r cos(α) sin(β)
sin(α) r cos(α) 0

cos(α) sin(β) −r sin(α) sin(β) r cos(α) cos(β)

 dr

dα
dβ

 (7.15)

Note that the radial terms (r) in Equations 7.14 and 7.15 cancel each other. These calcula-
tions are performed in poslos2cart. Special expressions must be used for positions at
the north and south pole (see the code) as the azimuth angle has there a special definition
(Section 3.4.2).

The cartesian position of a point along the geometrical path at a distance l is then simply x2

y2

z2

 =

 x1 + ldx
y1 + ldy
z1 + ldz

 (7.16)

The cartesian viewing vector [dx,dy,dz]T is constant along a geometrical path. The new
position is converted to spherical coordinates by Equation 7.13 and the new spherical view-
ing vector is calculated as dr

dα
dβ

 =

 cos(α) cos(β) sin(α) cos(α) sin(β)
− sin(α) cos(β)/r cos(α)/r − sin(α) sin(β)/r
− sin(β)/(r cos(α)) 0 cos(β)/(r cos(α))

 dx

dy
dz

 (7.17)

which is converted to a zenith and azimuth angle as

ψ = arccos(dr)
ω = arccos(rdα/ sin(ψ)), for dβ >= 0 (7.18)

ω = − arccos(rdα/ sin(ψ)), for dβ < 0

7.8 REFRACTION WITH SIMPLE EULER SCHEME 63

Special expressions must be used for positions at the north and south pole (see the code)
as the azimuth angle has there a special definition (Section 3.4.2). These calculations are
performed in cart2poslos.

For sensor positions outside the atmosphere, the calculations made in
ppath start stepping involve the problem of finding the position where the
path leaves the atmosphere. This position is found by an iterative search. The maximum
radius of the uppermost pressure surface is taken as first guess for the radius of the exit
point. The exit latitude and longitude for this radius is determined (as discussed below),
and the radius for the top of the atmosphere for the found position is used as radius for next
iteration. This procedure is repeated until the change from one iteration to next for both
latitude and longitude is smaller than 1·10−6. The exit position for a given radius, r, is
found by solving the following equation system:

r cos(α) cos(β) = x+ ldx
r sin(α) = y + ldy (7.19)

r cos(α) sin(β) = z + ldz

where (x, y, z) is the position of the sensor, (dx,dy,dz) the sensor LOS, and l, α and β are
the variables to be determined. The first step is to determine the distance l to the exit point,
which is found by adding the square of all three equations:

r2 = (x+ ldx)2 + (y + ldy)2 + (z + ldz)2 (7.20)

Once l is determined, the latitude and longitude are easily calculated by Equations 7.16
and 7.13. These calculations are implemented in the function psurface crossing 3d.
Similar expressions were derived to find the position for the crossing of a given latitude
or longitude but those expressions were removed from the code as they are not used with
present algorithms.1

7.8 Refraction with simple Euler scheme

Refraction affects the radiative transfer in several ways. The distance through a layer of a
fixed vertical thickness will be changed, and for a limb sounding observation the tangent
point is moved both vertically and horizontally. If the atmosphere is assumed to be hori-
zontally stratified (1D), a horizontal displacement is of no importance but for 2D and 3D
calculations this effect must be considered. For limb sounding and a fixed zenith angle,
the tangent point is moved downwards compared to the pure geometrical case (Figure 7.7),
resulting in that inclusion of refraction in general gives higher intensities. However, the
propagation path is still symmetric around tangent and surface points.

The refraction causes a bending of the path, which gives a deviation from the geometri-
cal approximation of propagation along a straight line. The bending of the path is obtained
by the relationship

dx
dl

=
1
n

(
∂n

∂y

)
x

(7.21)

1The expressions mentioned can be extracted from the function gridcell crossing 3d in ARTS ver-
sion 1-1-440.

64 PROPAGATION PATHS AND THE GEOID

0 2 4 6 8 10 12 14 16 18 20
0

10

20

30

40

50

60

70

80

Latitude distance [degrees]

A
lt

it
u

d
e

[k
m

]
Geometric calculations
With refraction

Figure 7.7: Comparison of propagation paths calculated geometrically and with refraction
considered, for the same zenith angle of the sensor line-of-sight. The figure include two pair
of paths, with refracted tangent altitude of about 0 and 10 km, respectively. The horisontal
coordinate is the latitude distance from the point where the path exits the model atmosphere
(at 80 km). The model atmosphere used had a spherical symmetry (that is, 1 D case, but the
calculations were performed in 2D mode).

where x is the direction of propagation, l the distance along the path, n the refractive index2,
and y is the coordinate perpendicular to the path. See further Section 9.4 in Rodgers [2000].

The workspace method ppath stepRefractionEuler takes refraction into con-
sideration by probably the most simple (from the viewpoint of implementation) algorithm
possible. This does not mean that it is the best way to consider refraction, it is rather ineffi-
cient regarding computational burden, and if the step length for the ray tracing (see below)
is made very small, the result can be completely wrong due to numerical problems.

The approach taken in ppath stepRefractionEuler is to take a geometrical ray
tracing step from the present point of the path (and in the direction of present line-of-sight).
Refraction is considered only when the line-of-sight at the new point is determined (Fig-
ure 7.8). The found line-of-sight is used to calculate the next ray tracing step etc. This can
be seen as an Euler solution to the differential problem given by Equation 7.21. The main
difference between handling 1D, 2D or 3D cases is how the line-of-sight for the new point
is corrected to compensate for the bending due to refraction. The calculation of propagation
paths including the effect of refraction is often denoted as ray tracing.

The length of the calculation steps is set by the generic input lraytrace. This length
2The refractive index is here assumed to have no imaginary part

7.8 REFRACTION WITH SIMPLE EULER SCHEME 65

r
n

r
n

r
n

r

i
i

i+1
i+1 i+2

i+2 i+3i+3n
ψ

i

ψi+1

ψ
i+2 ψi+3

l

l lrr

r

Figure 7.8: Schematic of the Euler ray tracing scheme. The ray tracing step length is lr.

shall not be confused with the final distance between the points that define the path, which is
controlled by the generic input lmax. The path is first determined in steps of lraytrace.
The found ray tracing points are then used for an interpolation to create a path step defined
exactly as for geometrical calculations. The normal situation is that the ray tracing step
length is considerably shorter than the final spacing between the path points. Suitable values
for lraytrace have not yet been investigated in detail, but for limb sounding values in
around 1 - 10 km should be appropriate. Shorter ray tracing steps (down to a level where
rounding errors will start to have an impact) will of course give a propagation path more
accurately determined, but on the cost of more time consuming calculations.

7.8.1 1D

When determining the propagation path through the atmosphere geometrical optics can be
applied because the change of the refractive index over a wavelength can be neglected.
Applying Snell’s law to the geometry shown in Figure 7.9 gives

ni sin(ψi) = ni+1 sin(ψi′) (7.22)

Using the same figure, the law of sines gives the relationship

sin(ψi+1)
ri

=
sin(180◦ − ψ′i+1)

ri+1
=

sin(ψi′)
ri+1

(7.23)

By combining the two equations above, the Snell’s law for a spherical atmosphere (that is,
1D cases) is derived [e.g. Kyle, 1991; Balluch and Lary, 1997]:

pc = rini sin(ψi) = ri+1ni+1 sin(ψi+1) (7.24)

66 PROPAGATION PATHS AND THE GEOID

ψ

i

i i+1 ni+1

r

propagation

ψ

ψ

´

path

ri
i+1

ni

Figure 7.9: Geometry to derive Snell’s law for a spherical atmosphere.

0 50 100 150 200 250 300 350

10
1

10
2

10
3

Refractivity [ppm]

P
re

ss
u

re
 [

h
P

a]

Figure 7.10: Vertical variation of refractivity (n−1)·106. Calculated for a mid-latitude sum-
mer climatology (FASCODE), where the dashed line is for a completely dry atmosphere,
and the solid line includes also contribution from water vapour.

7.8 REFRACTION WITH SIMPLE EULER SCHEME 67

−5 −4.5 −4 −3.5 −3 −2.5 −2 −1.5 −1 −0.5

x 10
−8

10
1

10
2

10
3

∂n/∂r [1/m]

P
re

ss
u

re
 [

h
P

a]

Figure 7.11: Vertical gradient of the refractive index. Calculated for a mid-latitude summer
climatology (FASCODE), where the dashed line is for a completely dry atmosphere, and
the solid line includes also contribution from water vapour.

where c is a constant. With other words, the Snell’s law for spherical atmospheres states
that the product of n, r and sin(ψ) is constant along the propagation path. It is noteworthy
that with n = 1, Equations 7.1 and 7.24 are identical.

The Snell’s law for a spherical atmosphere makes it very easy to determine the zenith
angle of the path for a given radius. A rearrangement of Equation 7.24 gives

ψ = arcsin(rn/pc) (7.25)

This relationship makes it possible to handle refraction for 1D without calculating any gra-
dients of the refractive index, which is needed for 2D and 3D. These calculations are imple-
mented in the function raytrace 1d linear euler. Figure 7.10 shows the vertical
variation of the refractive index.

7.8.2 2D

Equation 7.21 expressed in polar coordinates is [Rodgers, 2000, Eq. 9.30]

d(α+ ψ)
dl

= −sinψ
n

(
∂n

∂r

)
α

+
cosψ
nr

(
∂n

∂α

)
r

(7.26)

If the gradients are zero (corresponding to the geometrical case) we find that the sum of the
zenith angle and the latitude is constant along a 2D geometrical path, which is also made

68 PROPAGATION PATHS AND THE GEOID

0 10 20 30 40 50 60 70 80 90

10
1

10
2

10
3

Latitude [degree]

P
re

ss
u

re
 [

h
P

a]

1e−10

5e−11

2e−11

1e−11

5e−12

2e−12

1e−12 1e−12

Figure 7.12: Latitude gradient of the refractive index due to varying radius of the geoid. The
gradient is given as the change in refractive index over 1 m, which allows direct comparison
with the values in Figure 7.11e. The wet atmosphere from Figure 7.11 was used for all
latitudes, and the the plotted gradient is only caused by the fact that the radius of the geoid
is not constant. The gradient is positive on the southern hemisphere (shown), and negative
on the northern hemisphere.

clear by Equation 7.7. The geometrical zenith angle at ray tracing point i+ 1 is accordingly
ψi+1 = ψi − (αi+1 − αi). If then also the refraction is considered, we get the following
expression:

ψi+1 = ψi − (αi+1 − αi) +
lg
ni

[
− sinψi

(
∂n

∂r

)
αi

+
cosψi
ri

(
∂n

∂α

)
ri

]
(7.27)

The gradients of the refractive index for 2D are calculated by the function
refr gradients 2d. This function returns the gradients as the change of the refractive
index over 1 m. The conversion for the latitude gradient corresponds to the 1/r term found
in Equation 7.27, and this term is accordingly left out in raytrace 2d linear euler,
which is the function of this section.

The radial and latitudinal gradients of the refractive index are calculated in pure numer-
ical way, by shifting the position slightly from the position of concern. Figures 7.11 and
7.12 show example on gradients of the refractive index.

7.9 GEOID ELLIPSOIDS AND GEODETIC DATUMS 69

7.8.3 3D

For 3D, the geomtrical expressions are used to calculate the geometrical zenith and azimuth
angles at the end of the ray tracing step. Following the methodology for 2D, the geometrical
zenith and azimuth angles are then corrected to incorporate the influence of refraction. The
zenith angle is calculated as

ψi+1 = ψg − lg sinψi
ni

(
∂n

∂r

)
(αi,βi)

+ (7.28)

+
lg cosψi
rini

[
cosωi

(
∂n

∂α

)
(ri,βi)

+
sinωi
cosαi

(
∂n

∂β

)
(ri,αi)

]

where ψg is the zenith angle obtained from the geometrical expressions. In similar manner,
the geometrical azimuth angle, ωg, is corrected as

ωi+1 = ωg +
lg sinψi
rini

[
− sinωi

(
∂n

∂α

)
(ri,βi)

+
cosωi
cosαi

(
∂n

∂β

)
(ri,αi)

]
(7.29)

This expression, slightly modified, is found in raytrace 3d linear euler. The
terms of Equation 7.29 missing in that function, are part of refr gradients 3d to con-
vert the gradients to the same unit. The longitude gradient is converted to the unit [1/m] by
multiplication with the term 1/(r cosα).

7.9 Geoid ellipsoids and geodetic datums

This section defines the geoid ellipsoid and discusses related issues. The geoid is introduced
in Section 3.1.4. The workspace variable representing the geoid is r geoid.

7.9.1 Geoid ellipsoids

All geodetic datums are based on a reference ellipsoid. The ellipsoid is rotationally sym-
metric around the north-south axis. That is, the ellipsoid radius has no longitude variation,
it is only a function of latitude. The ellipsoid is described by an equatorial radius, re, and a
polar radius, rp. These radii are indicated in Figure 7.13. The radius of the ellipsoid for a
given latitude is

r�(α) =

√√√√ r2
er

2
p

r2
e sin2 α+ r2

p cos2 α
(7.30)

The radius given by Equation 7.30 can be directly applied for 2D and 3D cases. On the other
hand, for 1D cases the reference geoid is by definition a sphere and the radius of this sphere
shall be selected in such way that it represents the local shape of a reference ellipsoid. This
is achieved by setting r� to the radius of curvature of the ellipsoid. The curvature radius
differs from the local radius except at the equator and an east-west direction. For example,
at the equator and a north-south direction, the curvature radius is smaller then the local
radius, while at the poles (for all directions) it is greater (see further Figure 7.14).

70 PROPAGATION PATHS AND THE GEOID

The curvature radius, rc, of an ellipsoid is [Rodgers, 2000]

rc =
1

r−1
ns cos2 α+ r−1

ew sin2 α
(7.31)

where rns and rew are the north-south and east-west curvature radius, respectively,

rns = r2
er

2
p(r

2
e cos2 ω + r2

p sin2 ω)−
3
2 (7.32)

rew = r2
e(r

2
e cos2 ω + r2

p sin2 ω)−
1
2 (7.33)

The azimuth angle, ω, is defined in Section 3.4.2. The latitude and azimuth angle to apply
in Equations 7.31 - 7.33 shall rather be valid for a middle point of the propagation paths
(such as some tangent point), instead of the sensor position.

7.9.2 Geocentric and geodetic latitudes

The fact that the geoid is an ellipsoid, instead of a sphere, opens up for the two different
definitions of the latitude. The geocentric latitude, which is the the one used here, is the
angle between the equatorial plane and the vector from the coordinate system center to the
position of concern. The geodetic latitude is also defined with respect to the equatorial
plane, but the angle to the normal to the reference ellipsoid is considered here, as shown in
Figure 7.13. It could be mentioned that a geocentric latitude does not depend on the geoid
ellipsoid used, while the geodetic latitudes change if another reference ellipsoid is selected.
An approximative relationship between the geodetic (α∗) and geocentric (α) latitudes is
[Montenbruck and Gill, 2000]

α∗ = α+ f sin(2α) (7.34)

where f is the flattening of the ellipse:

f =
re − rp
re

(7.35)

The value of f for the Earth is about 1/298.26. This means that the largest differences be-
tween α and α∗ are found at mid-latitudes and the maximum value is about 12 arc-minutes.

The zenith and nadir directions shall normally be defined to follow the normal to the
reference ellipsoid, but, if nothing else is mentioned, these directions are here treated to go
along the vector the center of the coordinate system, as indicated in Figure 7.13. This latter
definition is preferred as it results in that a propagation path in the zenith/nadir direction
can be described by a single latitude and longitude value. The difference in geometrical
altitude when using these two possible definitions on the zenith direction is proportional to
the deviation between geocentric and geodetic latitude (Equation 7.34). For an altitude of
100 km around α = 45◦, the difference is about 350 m.

7.9.3 Geodetic datums

Table 7.1 gives the equatorial and polar radii of the reference ellipsoid for the geodetic
datums handled by ARTS.

7.9 GEOID ELLIPSOIDS AND GEODETIC DATUMS 71

x

y

local tangent

zenith
geoid ellipsoid

α∗α

r

er

p

Figure 7.13: Definition of the
ellipsoid radii, re and rp, geo-
centric latitude, α, and geode-
tic latitude, α∗. The dotted line
is the normal to the local tan-
gent of the geoid ellipsoid. The
zenith and nadir directions, and
geometrical altitudes, are here
defined to follow the solid line.

0 10 20 30 40 50 60 70 80 90
6330

6340

6350

6360

6370

6380

6390

6400

Latitide [deg]

R
ad

iu
s

[k
m

]

ellipsiod radius
curvature radius

Figure 7.14: The ellipsoid ra-
dius (r�) and curvature radius
(rc) for the WGS-84 reference
ellipsoid. The curvature radii
are valid for the north-south di-
rection.

0 10 20 30 40 50 60 70 80 90
−400

−350

−300

−250

−200

−150

−100

−50

0

Latitide [deg]

R
ad

iu
s

di
ffe

re
nc

e
[m

/d
eg

]

Figure 7.15: The change of the
WGS-84 ellipsoid radius for 1◦

latitude differences.

72 PROPAGATION PATHS AND THE GEOID

Datum re rp 1/f Reference

WGS-84 6378.137 km 6356.752 km 298.2572235 Montenbruck and Gill [2000]

Table 7.1: Equatorial and polar radius of reference ellipsoids. Values given as italic are
derived by the other two values and Equation 7.35.

7.10 Control file examples

Some examples on how the geoid radius and the surface altitude can be set:

Set the geoid to model WGS84 for 2D and 3D.
r_geoidWGS84

For 1D, *lat_1d* and *meridian_angle_1d* must be specified
to define the position and direction for which the curvature
radius shall be extracted.
NumericSet(lat_1d, 45)
NumericSet(meridian_angle_1d, 0)
r_geoidWGS84

Set the geoid to be spherical, with a radius of 6370 km
r_geoidSpherical(r_geoid, atmosphere_dim, lat_grid, lon_grid,

6370e3)

Set the geoid to be spherical, with standard radius (defined
in arts.h)
r_geoidSpherical(r_geoid, atmosphere_dim, lat_grid, lon_grid, -1)

Set a constant surface altitude of 1 km
ncolsGet(ncols, r_geoid)
nrowsGet(nrows, r_geoid)
MatrixSetConstant(z_surface, nrows, ncols, 1e3)

Different possibilities for the ppath step agenda:

Select geometric calculations, with no length criterion
for path points.
AgendaSet(ppath_step_agenda) {

ppath_stepGeometric(ppath_step, atmosphere_dim, p_grid, lat_grid,
lon_grid, z_field, r_geoid, z_surface, -1)

}

Consider refraction. The ray tracing step length is 2 km
and the length criterion for path points is 10 km.

7.10 CONTROL FILE EXAMPLES 73

AgendaSet(refr_index_agenda) {
refr_indexThayer

}
AgendaSet(ppath_step_agenda) {

ppath_stepRefractionEuler(ppath_step, rte_pressure,
rte_temperature, rte_vmr_list,
refr_index, refr_index_agenda,
atmosphere_dim, p_grid, lat_grid,
lon_grid, z_field, t_field,
vmr_field, r_geoid, z_surface,
10e3,
2e3)

}

74 PROPAGATION PATHS AND THE GEOID

Chapter 8

Surface emission and reflections

An introduction to the treatment of surface emission and reflections is given in Sec-
tion 3.5.5. The methods developed to handle different surface properties all set the variables
surface emission, surface los and surface rmatrix.

Let us start with a simple example in order to explain the usage of these workspace
variables. We will here assume that all downwelling radiation is reflected. This assumption
is made for all polarisation states. We assume further a 1D simulation, that the down-
welling radiation shall be calculated for nine zenith angles and that all downwelling di-
rections contribute equally (which is not a realistic assumption). The relevant workspace
variables should then be set as follows:

surface emission: A matrix (of correct size) of zeros.
surface los: A vector of length 9, covering the zenith angle range. A possible

choice would be [5,15,25,. . . ,85].
surface rmatrix: Each reflection matrix is a diagonal matrix with the value 1/9

throughout on the diagonal. That is, all elements with index (:,:,i,i) is 1/9. Size matching
surface los, f grid and stokes dim

8.1 The dielectric constant and the refractive index

The properties of a material are reported either as the relative dielectric constant, ε, or the
refractive index, n. Both these quantities can be complex and are related as

n =
√
ε. (8.1)

8.2 Relating reflectivity and emissivity

Kirchoff’s law applied to thermodynamics states that under conditions of local thermody-
namic equilibrium, thermal emission has to be equal to absorption [Ulaby et al., 1981, page

History
050613 First version finished by Patrick Eriksson.

76 SURFACE EMISSION AND REFLECTIONS

215]. This is a consequence of the fact that there must exist a radiation equilibrium be-
tween an object and its surrounding, if it is surrounded by a blackbody having the same
temperature (with no physical contact).

Thermodynamic equilibrium can be assumed for natural surfaces, as long as there exist
no strong temperature gradients. The Kirchoff law can then be used to relate the reflectivity
and emissivity of a surface. For rough surfaces the scattering properties must be integrated
over the half sphere (above the surface) to determine the emissivity [see e.g. Ulaby et al.,
1981, Eq. 4.186]. For specular reflections (defined below) and scalar radiative transfer
calculations, the emissivity e is

e = 1− r, (8.2)

where r is the reflective (power reflection coefficient) of the surface. Equation 8.2 is valid
for each polarisation state individually [Ulaby et al., 1981, Eq. 4.190a].

We have then that

Iup = Idownr + (1− r)B, (8.3)

where Iup is upwelling radiation, Idown is downwelling radiation and B is the magnitude
of blackbody radiation. As expected, if Idown = B, also Iup equals B. Expressing the last
observation using vector nomenclature gives

B
0
0
0

 = R

B
0
0
0

+ b, (8.4)

where R is the matrix (4 x 4) correspondence to the scalar reflectivity, describing the prop-
erties of the surface reflection. The vector b is the surface emission, that can be expressed
as

b = (1−R)

B
0
0
0

 , (8.5)

where 1 is the identity matrix.

8.3 Specular reflections

If the surface is sufficiently smooth, radiation will be reflected/scattered only in the comple-
mentary angle, specular reflection. Required smoothness for assuming specular reflection
is normally estimated by the Rayleigh criterion:

∆h <
λ

8 cos θ1
(8.6)

where ∆h is the root mean square variation of the surface height, λ the wavelength and
θ1 the angle between the surface normal and the incident direction of the radiation. The
criterion can also be defined with the factor 8 replaced with a lower integer number.

8.3 SPECULAR REFLECTIONS 77

The complex reflection coefficient for the amplitude of the electromagnetic wave for
vertical (Rv) and horizontal (Rv) polarisation is for a flat surface (if the relative magnetic
permeability (µr) of both media is 1) given by the Fresnel equations:

Rv =
n2 cos θ1 − n1 cos θ2

n2 cos θ1 + n1 cos θ2
(8.7)

Rh =
n1 cos θ1 − n2 cos θ2

n1 cos θ1 + n2 cos θ2
(8.8)

where n1 is refractive index for the medium where the reflected radiation is propagating, θ1

is the incident angle (measured from the local surface normal) and n2 is the refractive index
of the reflecting medium. The angle θ2 is the propagation direction for the transmitted part,
and is given by Snell’s law:

Re(n1) sin θ1 = Re(n2) sin θ2. (8.9)

where Re(·) denotes the complex real part. For cases where medium 1 is air, n1 can (in this
context) be set to 1.

The power reflection coefficients are converted to an intensity reflection coefficient as

r = |R|2, (8.10)

where |·| denotes the absolute value. Note that R can be complex, while r is always real.
The surface reflection can be seen as a scattering event and Section 22.5 can be used to

derive the reflection matrix values. The scattering amplitude functions of Equation 22.95
are simply

S2 = Rv, (8.11)

S1 = Rh, (8.12)

S3 = S4 = = 0. (8.13)

This leads to that the transformation matrix for a specular surface reflection is (compare to
Liou [2002, Sec. 5.4.3])

R =

rv+rh

2
rv−rh

2 0 0
rv−rh

2
rv+rh

2 0 0
0 0 RhR

∗
v+RvR∗h

2 i
RhR

∗
v−RvR∗h

2

0 0 i
RvR∗h−RhR∗v

2

RhR
∗
v+RvR∗h

2

 . (8.14)

If the downwelling radiation is unpolarised, the reflected part of the upwelling radiation is

R

I
0
0
0

 =

I(rv + rh)/2
I(rv − rh)/2

0
0

 . (8.15)

as expected.
If R is given by Equation 8.14, Equation 8.5 gives that the surface emission is

B
(
1− rv+rh

2

)
B rh−rv

2
0
0

 . (8.16)

78 SURFACE EMISSION AND REFLECTIONS

In the case of specular reflections, surface los shall of course be set to have the length 1.
The specular direction is calculated by the internal function surface specular los1.
Equations 8.14 and 8.16 give the values to put into surface rmatrix and
surface emission. A general method for the specular case (with internal models of
the dielectric properties of different media) is surfaceFlat, while surfaceSimple
and surfaceBlackbody treat some special cases.

8.4 Control file examples

The agenda surface prop agenda sets the surface properties. A simple example where
specular reflection is assumed and the surface emissivity is 0.9:

AgendaSet(surface_prop_agenda){
InterpAtmFieldToRteGps(surface_skin_t, t_field)
NumericSet(surface_emissivity, 0.9)
surfaceSimple

}

To read surface properties from files:

AgendaSet(surface_prop_agenda){
Ignore(rte_gp_p)
Ignore(rte_gp_lat)
Ignore(rte_gp_lon)
Ignore(rte_los)
ReadXML(surface_los, "surface_los.xml")
ReadXML(surface_rmatrix, "surface_rmatrix.xml")
ReadXML(surface_emission, "surface_emission.xml")

}

1Any tilt of the surface is neglected when determining the specular direction. If there would be any need to
consider surface tilt, almost complete code for this task existed in surface specular los but was removed
in version 1-1-876. The code can be obtained by e.g. checking out version 1-1-875.

Chapter 9

Clear sky radiative transfer

This chapter deals with the “clear sky” part of ARTS. That is, the only physical features
to consider are absorption and emission. A simulation can consists solely of clear sky
calculations. A clear sky calculations can also treat the radiative transfer from the surface
or the cloud box, to the sensor. How these calculations shall be performed is set by defining
rte agenda.

So far only unpolarised absorption (absorption does not depend on polarisation state) is
treated. Some steps towards handling Zeeman splitting (a feature affecting oxygen absorp-
tion) have been taken, but the work has not yet been finished.

9.1 The vector radiative transfer equation

The complete vector radiative transfer, including scattering, is given by Equation 21.35. If
scattering can be neglected, the equation can be written as

dI
ds

= −KI + aB, (9.1)

where I is the intensity vector (the Stokes vector), s is the distance along the propagation
path, K is the extinction matrix, a is the absorption vector and B is the source function (a
scalar). If local thermodynamic equilibrium applies, B equals the Planck function describ-
ing blackbody radiation. See further Chapter 21.

As scattering here is neglected, the elements of K and a are linked to each other, and
we have that1:

K−1a =

α
0
0
0

 ,
where α is the total gas absorption coefficient.

1This equation is for sure valid for unpolarised absorption. We have not confirmed generally for polarised
absorption, but appears to be valid for Zeeman splitting.

History
? Started by ?.

80 CLEAR SKY RADIATIVE TRANSFER

9.2 Standard algorithm

9.2.1 Simulation of transmission measurements

. . .

Chapter 10

Sensor modeling

A sensor model is needed because a practical instrument gives consistently spectra deviat-
ing from the hypothetical monochromatic pencil beam spectra provided by the atmospheric
part of the forward model (that is y 6= i always). For a radio (heterodyne) instrument, the
most influential sensor parts are the antenna, the mixer, the sideband filter and the spectrom-
eter. Limb sounding observations are also affected by Doppler shifts, but this effect is not
considered here, it is assumed to be treated separately.

In the follow text we will use the terms sensor to denote the total sensor configuration,
i.e. the the whole object that will be represented by the WSV sensor response. To
denote individual parts of the sensor, such as the antenna or the mixer, we use the terms
sensor parts or instrument, especially when talking of characteristics.

10.1 Internal functions

As described in Section 4 the forward model is divided into an atmospheric part and a sen-
sor part, Equation 4.6. The sensor part can be modelled by a sensor transfer matrix which is
precalculated for the entire atmospheric simulation, and applied on the monochromatic pen-
cil beam spectra, Equation 4.9. To calculate the total sensor response each individual part
of the sensor has to be calculated and combined. The individual parts for a microwave mea-
surements consists in most cases of an antenna, a sideband filter, a mixer and a spectrometer.
These are the instruments that has been used as a starting point for the sensor modelling and
WSM to compute their transfer matrices has been implemented. The description of the
sensor response modelling is also found in Eriksson et al. [2006].

The operations performed by the instruments on the incoming spectra can either be de-
scribed by a weighting, over viewing angles or frequencies, or a summation of signals in
different sidebands. Summation and weighting of the spectral components are both linear
operations, and thus it is possible to model the effect of the different sensor parts as subse-
quent matrix multiplications of the monochromatic pencil beam spectrum, as suggested in

History
050121 Revised and extended by Mattias Ekström.
000826 Written for ARTS-1 by Patrick Eriksson.

82 SENSOR MODELING

Here In ARTS Description

wa antenna diagram The antenna pattern
wb The backend channel response
wsb The sideband filter function
νch f backend The frequency grid of the backend channels
νLO lo Local oscillator frequency
P sensor pol The sensor polarisation response
H sensor response The total sensor response matrix

Table 10.1: Examples of symbols used in this chapter, the corresponding notation in the
ARTS source code and a short description of the quantity.

Eriksson et al. [2000]:

y = Hn . . .H2H1i + ε (10.1)

where n is the number of sensor parts to consider. Combining all sensor parts the sensor
model can then be expressed as a single matrix multiplication (Eq. 4.9)

y = Hi + ε

Applying Equation 4.9 for the sensor model will clearly give very rapid calculations, and we
must find ways to calculate H. Therefore internal functions has been designed to calculate
the response of such a weighting or a summation.

10.1.1 Weighting

The instruments that perform a weighting of the spectra are the antenna which weights
different viewing angles by the normalised antenna response, wa, and the spectrometer that
weights signals of neighbouring frequencies by the channel response, wch. The influence of
the antenna can be expressed as

ia =
∫

4π
i(Ω + Ω0)wa(Ω)dΩ with

∫
4π
wa(Ω)dΩ = 1. (10.2)

where i is the monochromatic pencil beam spectra, ia the apparent radiation intensity af-
ter the antenna, Ω the solid angle and Ω0 is some reference point for the antenna pattern,
normally the point of highest response. For the spectrometeral the output for channel n is

yn =
∫ ∞

0
i(ν)wnch(ν)dν with

∫ ∞
0
wnch(ν)dν = 1. (10.3)

To incorporate this weighting into the response matrix H, we want to express the weighting
as a multiplication between two vectors:

hg =
∫
f(x)g(x)dx, (10.4)

10.1 INTERNAL FUNCTIONS 83

where x is either angle or frequency, f(x) is the instrument response, g(x) is the spectral
signal, g is the vector representation of g(x) and h is a row vector. The vector h corresponds
to elements of a row in H, where row and element positions depend on the considered
response and sorting order between Stokes components, frequencies and viewing directions.
It should be noted that the actual values of g are not known when creating h, only the grid
used for g. In addition, the strength of the described method is that the same H can be used
repeatedly, and then in conjunction with a varying g.

The functions f and g can be represented using different grids, as indicated in Fig-
ure 10.1. This means that the product between f and g can have a discontinuity at each
position corresponding to a grid point of either f or g. Letting k be the calculation interval
index, the integral in Equation 10.4 is broken down as∫ xk+1

xk

f(x)g(x)dx =
xk+1 − xk

2

(
f(xk)g(xk) + f(xk+1)g(xk+1)). (10.5)

The value g(xk) is

g(xk) = g(xi)
xi+1 − xk
xi+1 − xi + g(xi+1)

xk − xi
xi+1 − xi , xi ≤ xk < xi+1, (10.6)

where i is grid index of g, and the range [xi, xi+1] encompasses the range [xk, xk+1]. The
value g(xk+1) is determined likewise. The response function f is known and f(xk) and
f(xk+1) can be explicitely calculated (following Equation 10.6).

Inserting Equation 10.6 in 10.5 yields the following expressions for the considered in-
tegral interval: ∫ xk+1

xk
f(x)g(x)dx =

xk+1−xk
2

[(
f(xk)

xi+1−xk
xi+1−xi + f(xk+1)xi+1−xk+1

xi+1−xi
)
g(xi)+(

f(xk) xk−xi
xi+1−xi + f(xk+1)xk+1−xi

xi+1−xi
)
g(xi+1)

]
, (10.7)

and the weights to be added to element i and i+ 1 of h are then

hi = hi + xk+1−xk
2

[
f(xk)

xi+1−xk
xi+1−xi + f(xk+1)xi+1−xk+1

xi+1−xi
]

(10.8)

hi+1 = hi+1 + xk+1−xk
2

[
f(xk) xk−xi

xi+1−xi + f(xk+1)xk+1−xi
xi+1−xi

]
(10.9)

The vector h is initiated to hold zeros and the calculation procedure is iterated over k.
To ensure energy conservation this vector should be normalised such that the sum of the
elements equals one.

10.1.2 Summation

The summation takes place when the mixer downconverts the sideband signals into the
intermediate frequency, νIF. This is done by mixing the measurement signal with the local
oscillator signal (LO). For a frequency ν, the intermediate frequency is given by

νIF = |ν − νLO|, (10.10)

84 SENSOR MODELING

Ik

xk xk+1

xf(x)

g(x)

xi xi+1

Figure 10.1: Schematic of antenna and backend calculations. The dashed lines show the
end points of each integral interval. The shaded area corresponds to the interval considered
in Equation 10.5.

where νLO is the frequency of the LO. This procedure has the consequence that frequencies
with the same distance to νLO are translated to the same νIF. Thus, the ‘image’ frequency,
ν ′, corresponding to ν is

ν ′ = 2νLO − ν. (10.11)

The signal from ν and ν ′ is normally not weighted equally. This can be an effect of a fre-
quency dependent response of elements from the antenna to the mixer, or caused by a side-
band filter, with the purpose of minimising the contribution from one of the bands. These
terms are here lumped together into one term, the sideband response wsb. The apparent
intensity after the mixer, IIF, can then be expressed as

IIF(νIF) =
wsb(ν)I(ν) + wsb(ν ′)I(ν ′)

wsb(ν) + wsb(ν ′)
. (10.12)

To model the sideband folding, a vector h representing the summation of the sideband
filtered radio frequency (RF) signals into an intermediate frequency (IF) signal is to be
determined. The translation of frequencies is given by Equation 10.11. To preserve all
spectral information it is needed that the IF grid includes all unique transformations from
RF to IF. That is, the IF grid shall be constructed by the projection of the RF grid from
both sidebands (with duplicates of IF values removed). This implies that each IF grid point
corresponds directly to a RF of one of the sidebands, but will normally fall between RF
grid points in the other band, as illustrated in Figure 10.2, if not the RF grid is perfectly
symmetric around the LO frequency.

Using a vector representation v of the RF grid and let vi and vi+1 encompass the fre-
quency ν and vj and vj+1 encompasses ν ′, then the same notation as in Equation 10.12 can
be used to write the elements of the response vector h as

hi =
vi+1 − ν
vi+1 − vi

wsb(ν)
wsb(ν) + wsb(ν ′)

, (10.13)

hi+1 =
ν − vi

vi+1 − vi

wsb(ν)
wsb(ν) + wsb(ν ′)

, (10.14)

hj =
vj+1 − ν ′
vj+1 − vj

wsb(ν ′)
wsb(ν) + wsb(ν ′)

, (10.15)

10.2 INSTRUMENT CHARACTERISTICS 85

IF band lower band upper band

vLOvIF vjvi vi+1

wsb

ν

I

Figure 10.2: Visualisation of how the RF sidebands are folded around νLO down to the IF.
The sideband filter function, wsb, shows how the sidebands are weighted.

hj+1 =
ν ′ − vj

vj+1 − vj

wsb(ν ′)
wsb(ν) + wsb(ν ′)

, (10.16)

where all other elements of h are zero. Either hi+1 or hj+1 is unnecessary to compute,
depending on if the IF corresponds directly to hi or hj . The complete response matrix is
computed by iterating over all IF.

The normal situation should be that the sideband folding and filtering are kept constant,
and it is not needed to repeat the calculations even if the instrument is scanning. The weights
of h from one viewing direction can for such cases be applied throughout the scan.

10.2 Instrument characteristics

To be able of computing the response from a certain sensor part, we need the instrument
characteristics. This information thus have to be stored in such a way that we can incorpo-
rate it in our forward model. ARTS uses XML-files to store and retrieve variables from files
and this offer a easy way to include characteristics that has been prepared outside ARTS.
There also exist methods for computing simple gaussian characteristics. See Section 10.2.1
below for more details.

To describe sensor characteristics in ARTS matrices are often used with the first column
containing relative grid positions for the values in the following columns. These grid posi-
tions can for example be frequencies relative to a channel frequency or angles relative to a
antenna line-of-sight. These matrices can then be grouped together in arrays, or even array
of arrays, to enable the characteristics to vary with other parameters such as polarisation,
and use of different antennas. Common to all these variables are that the user has the choice
that for each parameter either provide one set of characteristics that will be used for all cases
or to provide a set of characteristics for each state of the parameter. As an example, consider
the array of matrices used for the backend response characteristics. On the matrix level, the
first column holds the relative frequency grid and the following hold the response values.
If we want the same response for all channel frequencies only one column of response val-
ues is needed, on the other hand if we want the backend response to vary with the channel
frequencies a column must be given for each frequency in νb. Further on the array level,
if the array only has one matrix that response will be used for all polarisations otherwise
the array needs as many matrices as polarisations simulated. Note that polarisations is not

86 SENSOR MODELING

the same as Stokes dimension, see Section 10.5 for more information on polarisation. How
the sensor characteristics are implemented for each sensor part are described in the sections
concerning the different sensor parts and in the online help.

10.2.1 Gaussian response

There exist a simple method for creating a gaussian instrument characteristic. Given the
FWHM and the total width and maximum spacing of the grid GaussianResponse cre-
ates a matrix where the first column holds the relative grid and the second holds the weights.
This method has a limited use, but can prove useful for setting up the characteristics for sim-
ple sensor configurations.

10.2.2 Normalisation

In most cases the sensor characteristics should be normalised as in Equation 10.2, 10.3 and
10.12, but for the possibility to study the sensor response, the normalisation is controlled
by the WSV sensor norm. For normalised sensor responses this variable should be set
to one, and for non-normalised sensor responses it should be zero.

10.3 Sensor response initialisation

Even if the monochromatic pencil beam spectrum is studied without any sensor influence,
the sensor variables, especially H has to be set. The reason is that the radiative transfer
calculations allways applies a H to the spectrum or spectra. On the other hand if a re-
sponse from a sensor system should be applied to the spectral values the sensor variables
has to be initialised properly. For these tasks there exist two WSMs, sensorOff and
sensor responseInit. At least one of these has to be included in the control file.

10.3.1 No sensor

If the calculated monochromatic pencil beams is to be studied as is, i.e. there is no sensor
system present in the simulation, only one WSM is needed sensor off. It sets all the
necessary sensor variables so that the monochromatic pencil beams are unchanged. This
means for instance setting H to be an identity matrix. This method also affects several
other workspace variables, to get a complete list use the online help for sensor off. The
syntax to disable the sensor in the simulation is simply;

sensorOff{}

10.3.2 Initialisation

When there is a sensor system present in the simulation the sensor response variables has to
be set up in a correct way. The WSM sensor responseInit takes care of this. It sets
the H to be an identity matrix with correct size so that it is applicable to the monochromatic
pencil beam column vector. It also initialises WSV that are use to remember the current
settings of the spectra, these are updated by all succeeding sensor response WSMs, and

10.4 ANTENNA RESPONSE 87

therefor gives the accurate output grids and values for the frequency and zenith- and azimuth
angle grids and number of polarisations for the final spectra. These variables are

sensor response f the frequency grid
sensor response za the zenith angle grid
sensor response aa the azimuthal angle grid
sensor response pol the number of polarisations.

For the initial sensor response the output grids are the frequency grid of the monochro-
matic pencil beam calculations, the zenith- and azimuthal angle grid for each measurement
block and the number of polarisation equal the Stokes dimension. Since these WSV are
used for the initialisation they have to be set prior to calling sensor responseInit to-
gether with sensor norm, the position and line-of-sight of the sensor and the atmosphere
dimension.

10.4 Antenna response

The influence of the antenna can as described above in Equation 10.2 be expressed as a
weighting between the antenna response, wa, as a function of viewing direction and the
monochromatic pencil beam spectra. In ARTS the pencil beams are calculated for each
measurement block at the angles given by zenith- and azimuthal angle grids added to the
current line-of-sight as described in 3.4.3. Which viewing directions that are taken into
account in the weighting is determined by the antenna line-of-sight and the antenna pattern.
ARTS is prepared to handle a full 3D environment with a 2D antenna, but so far only
methods for 1D antennas have been developped.

10.4.1 Antenna diagram

The antenna pattern wa in ARTS is represented by a structure antenna diagram that
consists of an array of arrays of matrices. The reason to use such a complicated structure
is to enable as much variability as possible when describing the antenna pattern. With this
structure it is possible to define the antenna response for different viewing angles, polar-
isations and frequencies. Since there only exists a method for 1D antennas, wa is so far
only defined for 1D antenna patterns. The structure consists of matrices that describe the
weights for different angles. The first column in matrices describes the relative angular
grid and the following columns the weights for different frequencies, see Figure 10.4.1.
Combining the antenna patterns relative angular grid with the antenna line-of-sight relative
angle gives the measurement block angular grid seen by the antenna. Each polarisation is
then represented by a separate matrix and each viewing angle by an array of matrices. By
using arrays of matrices instead of tensors it is also possible to use different settings for
the different polarisations/viewing directions. For each of these sets it is possible to define
only one column, matrix or array of matrices, or a full set of columns, matrices or arrays
of matrices. E.g. for the most simple case where the antenna has the same pattern for all
directions and frequencies wa consists of a single array of matrix with a single two column
matrix.

88 SENSOR MODELING

∆ϕ f1 f2 fn

p1
p2

pm

∆ϕ f1 f2 fn

p1
p2

pm

ϕ1 : ϕ2 :

Figure 10.3: Visualisation of the antenna pattern WSV antenna diagram for two view-
ing directions ϕ1 and ϕ2, ∆ϕ is the relative angular grid, fi the i:th frequency and pj the
j:th polarisation.

10.4.2 Antenna line-of-sight

As described in 10.4.1 the antenna pattern includes a dimension for different viewing direc-
tions. This is useful when simulating multiple antennas or a multiple beam antenna. The
viewing directions are described in ARTS by antenna los. This is a one- or two column
matrix describing the relative offset of the antennas with respect to the sensor line-of-sight.
The columns follow the general idea for antenna dimensionality, with first column denoting
zenith offsets and the second being used for 2D antennas and denoting azimuthal offsets.
The rows on the other hand describes the number of antennas or beams, and in the common
case of only one antenna present the matrix should therefor contain a row of zero. This
variable is important when dealing with rotating sensors as is described in Section 10.5.2.

10.4.3 1D antenna

Here it will be assumed that the variation of I in one angular dimension can be neglected,
and that the weighting can be described by an one dimensional integral:

Ia =
∫ π

−π
I(θ + θ0)wθa(θ) dθ, (10.17)

wθa(θ) =
∫ 2π

0
wa(θ, φ) cos(θ) dφ, (10.18)

where θ0 is the reference angle of the antenna, the weighting is only performed over the
zenith angles. The only variables needed apart from the variables needed for the initial-
isation are the antenna line-of-sight and the antenna pattern. A convenient way to set the
antenna dimensionality before the sensor initialisation is to use the WSM AntennaSet1D.

The 1D antenna is included in the sensor by using the WSM
sensor responseAntenna1D and it updates both H and the zenith angular grid
of the final spectra.

10.5 POLARISATION AND ROTATION 89

10.5 Polarisation and rotation

Taking polarisation into account, and assuming no losses, the measured intensity for a cer-
tain direction and frequency , Ip, is

Ip =
1
2
ps (10.19)

where s is the Stokes components of the incoming radiation and p is a row vector of the
same length as s describing the sensor polarisation response. For a rotating sensor a transfor-
mation matrix L(χ), see Section 10.5.2, is applied to obtain consistent definition between
the polarisation directions for atmospheric radiation and sensor response, Equation 10.19
then becomes

I =
1
2
pL(χ)s. (10.20)

For an instrument measuring a single polarisation, the first element of p shall be one and the
three last elements shall fulfil

∑4
i=2 p

2
i = 1, where pi is the i:th element of p. For example,

if vertical polarisation is measured, then p = [1 1 0 0] and for linear ±45◦ polarisation
p = [1 0 ∓1 0].

Several sensor parts can have a polarisation varying response, but there is normally a
single part that dominates the polarisation response. The normal case for the instrument type
considered here is that the mixer is only sensitive to a single polarisation, and the natural
time to apply Equation 10.19 or 10.20 is then after the antenna, but before the sideband
folding and the backend.

10.5.1 Polarisation response

To study different polarisations in ARTS, these has to be defined by the polarisation matrix
P. This is a matrix where each row is a row vector p corresponding to the polarisation
to study and the columns matches the Stokes components of the simulation. The number
of columns must therefor equal the Stokes dimension of the simulation, see Section 22 for
more information and especially Section 22.3 for examples of some standard polarisations.
An example matrix for studying horisontally and right-handed circular polarisation would
look like

P =

[
1 −1 0 0
1 0 0 1

]
.

When initialised P is set to be the identity matrix, so to study all Stokes components
nothing more has to be done. The sensor pol matrix is most easily read from
XML-file, and the calculation of the sensor response of polarisation is done by calling
sensor responsePolarisation. After this method the number of polarisations are
equal to the rows of P. When applying a polarisation matrix to the monochromatic pencil
beam spectra the intensities are no longer ordered by Stokes dimension, instead they get
ordered by the polarisations given in P.

90 SENSOR MODELING

10.5.2 Rotating sensor

A rotating sensor configuration can be modelled by rotating the sensor frame between each
measurement block by an angle χ. The transformation matrix for an angle χ is given by
Liou [2002],

L(χ) =

1 0 0 0
0 cos 2χ sin 2χ 0
0 − sin 2χ cos 2χ 0
0 0 0 1

 . (10.21)

In ARTS the rotation angles χ is stored in the vector sensor rot, and is used to assign
a rotation angle for each antenna line-of-sight. If the rotation is constant the sensor rot
vector can contain a single element describing that rotation angle. From Equation 10.20
it can be seen that the rotation should be applied to the incoming intensities before the
polarisation, therefor the call to sensor responseRotation must precede the call to
the polarisation WSM in the control file. Since the rotation WSM does not know anything
about viewing directions it must also be placed after the antenna function.

10.6 Mixer and sideband filter response

As described in Section 10.1.2 the mixer folds the two RF sidebands together into the IF
band. At the same time the sideband ratio can be altered by the mixer itself and a side-
band filter, these two effects are grouped together to what we refer to as the sideband filter.
In ARTS there are methods both for a single mixer configuration and for multiple mixer
configurations. From Equation 10.12 it can be seen that the summation is by its definition
normalised, so even if sensor norm is set to one the rows of Hmixer will be normalised.

10.6.1 Single mixer and sideband filter

For the single mixer configuration the needed variables are the LO frequency, νLO, and the
sideband filter function, wsb. In ARTS the νLO is stored in the vector lo which in this case
should have length one, and wsb is given as a matrix, the first column holding the RF grid
and the second column the weights. There are no special WSV dedicated for the sideband
filter, so it needs to be loaded into the arbitrary matrix variable matrix 1 before being
passed as a generic input to the calculating routine. This could look like

ReadXML(lo) { "lo.xml" }
ReadXML(matrix_1) { "sbfilter.xml" }
sensor_responseMixer(matrix_1) {}

The method sensor responseMixer changes the sensor response grid for frequencies
to be in IF, this grid is also stored in f mixer. Depending on the RF grid configuration,
the conservation of all spectral values in RF may increase the number of grid points in IF.

10.6.2 Multiple mixers with single backends

For a sensor configuration with several channels which are related to different mixers a
special WSM have been designed sensor responseMultiMixerBackend. This

10.7 BACKEND RESPONSE 91

method works a bit different from the individual mixer and backend WSM. In this method
each channel is related to a polarisation state, a local oscillator and a backend frequency
channel. These three variables have to be declared for each channel, even if they are equal
for some of the channels. The WSV that hold these variables are sensor pol, lo and
f backend, and these should all have the same number of rows/length. For each channel
the specified polarisation state is constructed from the Stokes vector, and a νLO is specified
folding the spectra as in Equation 10.12. The wsb can be given different weights for the
different channels, these have to be given for the same relative grid and should be stored
as subsequent columns in the generic input matrix. This method also applies the backend
response to the spectra, this means a weighting over frequencies see Equation 10.3, with the
possibility of using different backend responses for the different channels. Formally we can
write the resulting sensor response as the product of the mixer and backend responses,

Hout = HbackendHmixer (10.22)

This implies that the backend channel characteristics, wb, and the channel frequencies, νch,
has to be stored in their WSV prior to calling the WSM. This method operates in RF there-
fore νch also has to be given in that domain, this also set the new sensor response frequency
grid to be in RF. An important difference to the sensor responseBackend method is
that the backend response is given as a single matrix instead of an array of matrices. For
more information about the backend response see Section 10.7.

10.6.3 Conversion of IF to RF

Since the mixer methods change the sensor response grid into IF, it can sometimes be conve-
nient to be able to convert them back into the RF domain for a more understandable result.
This is also a necessary step to perform if the radiances are to be converted into bright-
ness temperatures. The conversion is done by the method ConvertIFToRF that given the
generic input for which sideband to return, changes the sensor response frequency grid and
if necessary re-orders the spectral values. If the IF grid is unfolded to double sidebands the
number of grid points in RF will be twice as many as in IF, thus increasing the size of the
sensor response frequency vector and the measurement vector. This method only works for
single mixer configurations where there is only one νLO given.

10.7 Backend response

The last sensor part in the instrument is generally called the backend, sometimes the mixer
is also included in this concept but here we only consider the part that transform monochro-
matic radiances into channel frequency radiances. In the case of a radiometer, this can be
a spectrometer. Like the antenna weights the monochromatic pencil beams over angles,
the backend spectrometer performs a similar weighting over frequencies as described by
Equation 10.3. The spectra goes from being monochromatic to include intensities from
the neighbouring frequencies. In ARTS the weighting is controlled by two variables; the
channel centre frequencies νch and the spectrometer channel response wch. The channel
centre frequencies are the frequencies for which the spectrometer outputs the measured ra-
diances, for this purpose the WSV f backend is a vector that has to be provided by the
user. The spectrometer channel response describes how the monochromatic radiances are

92 SENSOR MODELING

weighted around the centre frequencies, in analogy with the antenna line-of-sight and an-
tenna pattern. The channel response is stored as an array of matrices, this way the weights
are allowed to vary with frequency and polarisation. The matrices consists of a relative
frequency grid and subsequent weights. Each matrix corresponds to the polarisations given
in P. The wch array of matrices can be passed to sensor responseBackend by the
generic input arrayofmatrix 1. This WSV can be set up by reading XML-files or by
calling the function ArrayOfMatrixSet, see the online help for instructions. After ap-
plying the sensor response for the backend spectrometer the sensor response frequency grid
is updated to be equal the νch grid.

10.8 Control file example

Chapter 11

Batch calculations

In many occasions you want to repeat the calculations with only a few variables changed.
Examples on such cases are to perform 1D calculations for a number of atmospheric states
taken from some atmospheric model, generate a set of spectra to create a training database
for regression based inversions or perform a numeric inversion error analysis. For such
calculations it is inefficient to perform the calculations by calling ARTS repeatedly. For
example, as data must be imported for each call even if the data are identical between
the cases. Cases such as the ones described above are here denoted commonly as batch
calculations.

It is impossible to put all possible types of batch calculations inside a simple framework
and the task of organising, or creating, the input data is left to more flexible programming
environments, such as Matlab (where you of course use Atmlab) and Python. Instead, a
general core functionality has been created that is useful for a large range of tasks.

11.1 Workspace variables and methods

The calculation flow is controlled be setting the ybatch calc agenda. Beside this
agenda, the user must set the variable ybatch n. This variable is the number of defined
batch cases. Or in fact, how many batch cases that shall be considered. If the agenda can
provide more than ybatch n cases, the remaining cases are just ignored. There are few
formal requirements on the involved agenda. Execution of ybatch calc agenda must
result in a new spectrum vector, y, most likely by a call of RteCalc.

The actual calculations are made by calling ybatchCalc. The basic idea is simple,
each loop inside this method shall produce a new spectrum vector, where each realisation is
stored in ybatch. Variables are updated to a new batch case by ybatch calc agenda,
where ybatch index, set by ybatchCalc, tells the agenda which case to select. More
in detail, ybatchCalc makes the following operations:

History
070726 Copy-edited by Stefan Buehler.
070618 Updated by Oliver Lemke.
040916 Created by Patrick Eriksson.

94 BATCH CALCULATIONS

1. Performs a-c with ybatch index looped from 0 to (ybatch n-1)

a. Executes ybatch calc agenda.

b. If ybatch index = 0, resizes ybatch based on ybatch n and length of y

c. Makes copy of y in column ybatch index of ybatch.

You see it is simple! The question is only what to put inside the agenda?

11.2 Control file examples

There exist some special workspace methods for the ybatch calc agenda, named as
XxxxxExtractFromXxxxx. The common idea of these functions is to store the batch
cases in tensors with one dimension extra compared to corresponding workspace variables.
For example, a set of t field (which is of type Tensor3) is stored as Tensor4.

In the following 1D example, five atmospheric scenarios have been put into the three
first loaded files, and a random vector of zenith angles is found in the last file. The batch
calculations are then performed as:

ReadXML(tensor4_1, "batch_t_field.xml")
ReadXML(tensor4_2, "batch_z_field.xml")
ReadXML(tensor5_1, "batch_vmr_field.xml")
ReadXML(tensor3_1, "batch_za.xml")
IndexSet(ybatch_n, 5)

AgendaSet (ybatch_calc_agenda){
Print(ybatch_index, 0)
Tensor3ExtractFromTensor4(t_field, tensor4_1, ybatch_index)
Tensor3ExtractFromTensor4(z_field, tensor4_2, ybatch_index)
Tensor4ExtractFromTensor5(vmr_field, tensor5_1, ybatch_index)
MatrixExtractFromTensor3(sensor_los, tensor3_1, ybatch_index)

RteCalc
}

ybatchCalc
MatrixToTbByRJ(ybatch, ybatch)

WriteXML("ascii", ybatch, "ybatch_run1.xml")

If you then want to repeat the calculations, for example with another propagation path
step length (e.g. 25 km), it is sufficient to add the lines:

AgendaSet(ppath_step_agenda){
ppath_stepGeometric(ppath_step, atmosphere_dim, p_grid,

lat_grid, lon_grid,
z_field, r_geoid, z_surface,

11.2 CONTROL FILE EXAMPLES 95

25e3)
}

ybatchCalc
MatrixToTbByRJ(ybatch, ybatch)

WriteXML("ascii", ybatch, "ybatch_run2.xml")

96 BATCH CALCULATIONS

Chapter 12

Description of clouds

12.1 Introduction

In the Earth’s atmosphere we find liquid water clouds consisting of approximately spherical
water droplets and cirrus clouds consisting of ice particles of diverse shapes and sizes. We
also find different kinds of aerosols. In order to take into account this variety, the model
allows to define several particle types. A particle type is either a specified particle or a
specified particle distribution, for example a particle ensemble following a gamma size
distribution. The particles can be completely randomly oriented, azimuthally randomly
oriented or arbitrarily oriented. For each particle type being a part of the modeled cloud
field, a data file containing the single scattering properties (〈Ki〉, 〈ai〉, and 〈Zi〉), and the
appropriate particle number density field is required. The particle number density fields are
stored as GField3, including the field stored in a three-dimensional tensor and also the
appropriate atmospheric grids (pressure, latitude and longitude grid). For each grid point in
the cloud box the single scattering properties are averaged using the particle number density
fields. In the scattering database the single scattering properties are not always stored in the
same coordinate system. For instance for randomly oriented particles it makes sense to store
the single scattering properties in the so-called scattering frame in order to reduce memory
requirements. The following section describes in detail the SingleScatteringData
class. The consequent section describes how to realize different kinds of size distributions
in the ARTS frame by defining appropriate particle number density fields.

12.2 Single scattering properties

12.2.1 Coordinate systems: The laboratory frame and the scattering frame

For radiative transfer calculations we need a coordinate system to describe the direction
of propagation. For this purpose we use the laboratory frame, which has been introduced
in Section 3 and which is also shown in Figure 21.1. The z-axis corresponds to the local
zenith direction and the x-axis points towards the north-pole. The propagation direction

History
050913 Created and written by Claudia Emde

98 DESCRIPTION OF CLOUDS

is described by the local zenith angle θ and the local azimuth angle φ. This coordinate
system is the most appropriate frame to describe the propagation direction and the polar-
ization state of the radiation. However, in order to describe scattering of radiation by a
particle or a particle ensemble, it makes sense to define another coordinate system taking
into consideration the symmetries of the particle or the scattering medium, as one gets much
simpler expressions for the single scattering properties. For macroscopically isotropic and
mirror-symmetric scattering media it is convenient to use the scattering frame, in which
the incidence direction is parallel to the z-axis and the x-axis coincides with the scattering
plane, that is, the plane through the unit vectors n̂inc and n̂sca. The scattering frame is il-
lustrated in Figure 12.1. For symmetry reasons the single scattering properties defined with
respect to the scattering frame can only depend on the scattering angle Θ,

Θ = arccos(n̂inc · n̂sca), (12.1)

between the incident and the scattering direction.

inc
n

n
sca

x

z

θ

Figure 12.1: Illustration of the scattering frame. The z-axis coincides with the incident
direction n̂inc. The scattering angle Θ is the angle between n̂inc and n̂sca.

12.2.2 Scattering datafile structure

The single scattering properties are pre-calculated, for example by using the T-matrix code
by Mishchenko et al. [2002], and stored in data-files. Different methods for the calculation
of single scattering properties are reviewed in Emde [2005].

The format of the scattering database allows space reduction due to symmetry for cer-
tain special cases, e.g. random orientation or horizontal alignment. The file format is
XML. The data is stored in a class called SingleScatteringData, which resides in
the files optproperties.h. The class consists of the following fields (compare also
Table 12.2.2):

• enum ptype: An attribute which contains information about the data type, which
is the classification of the kind of hydrometeor species (randomly oriented, general
case ...). This attribute is needed in the radiative transfer function to be able to extract

12.2 SINGLE SCATTERING PROPERTIES 99

the physical phase matrix, the physical extinction matrix and the physical absorption
vector from the data.

Possible values of ptype are:

PTYPE GENERAL = 10
PTYPE MACROS ISO = 20
PTYPE HORIZ AL = 30

A more detailed description of the different cases is given below.

• String description: Here the particle type should be specified explicitly. We can
have the case randomly oriented particles, but furthermore we also have to specify
the exact particle properties (i.e. size and shape distribution). This can be a longer
text describing how the scattering properties were generated. It should be formatted
for direct printout to screen or file.

• Vector f grid: Frequency grid [Unit: Hz].

• Vector T grid: Temperature grid [Unit: K].

• Vector za grid:

1. p10, p30: Zenith angle grid (Range: 0.0◦≤ za ≤ 180.0◦).

2. p20: Scattering angle grid (Range: 0.0◦≤ za ≤ 180.0◦).

• Vector aa grid: Azimuth angle grid.

1. p10: Range: -180.0◦≤ aa ≤ 180.0◦

2. p20: Not needed, since optical properties depend only on scattering angle
(dummy grid).

3. p30: Only half of the grid is required (Range: 0.0◦≤ aa ≤ 180.0◦)

The angular grids have to satisfy the following conditions:

– They have to be equidistant.

– The value of the data must be the same for the first and the last grid-point. This
condition is required for the integration routine.

– If we only have to store a part of the grid, for example za grid only from 0◦to
90◦, these two values (0◦, 90◦) must be grid-points.

• Tensor7 pha mat data: Phase matrix data 〈Z〉 [Unit: m2]. The dimensions of the
data array are:

[frequency temperature za sca aa sca za inc aa inc
matrix element]

The order of matrix elements depends on the chosen case. For most cases we do not
need all matrix elements (see description of cases below).

100 DESCRIPTION OF CLOUDS

Table 12.1: Structure of single scattering data files

Symbol Type Dimensions Description
enum specification of particle type
String short description of particle type

ν Vector (ν) frequency grid
T Vector (T) temperature grid
ψ Vector (ψ) zenith angle grid
ω Vector (ω) azimuth angle grid
〈Z〉 Tensor7 (ν, T , ψ, ω, ψ′, ω′, i) phase matrix
〈K〉 Tensor5 (ν, T , ψ, ω, i) extinction matrix
〈a〉 Tensor5 (ν, T , ψ, ω, i) absorption vector

• Tensor5 ext mat data: Extinction matrix data 〈K〉 [Unit: m2]. The dimensions
are:

[frequency temperature za inc aa inc matrix element]

Again, the order of matrix elements depends on the chosen case.

• Tensor5 abs vec data: Absorption vector data 〈a〉 [Unit: m2].

The absorption vector is also precalculated. It could be calculated from extinction
matrix and phase matrix. But this calculation takes long computation time, as it
requires an angular integration over the phase matrix. For the cases with symmetries
(e.g., random orientation) the data files will not become too large even if we store
additionally the absorption vector. The dimensions are:

[frequency temperature za inc aa inc vector element]

12.2.3 Definition of particle types

Macroscopically isotropic and mirror-symmetric scattering media (p20)

For macroscopically isotropic and mirror-symmetric scattering media (totally randomly ori-
ented particles) the optical properties are calculated in the so-called scattering frame as
shown in Figure 12.1. In this coordinate system the z-axis corresponds to the incident di-
rection and the xz-plane coincides with the scattering plane. Using this frame only the
scattering angle, which is the angle between incident and scattered direction is needed.
Furthermore the number of matrix elements of both matrices, phase matrix and extinction
matrix, can be reduced (see Mishchenko et al. [2002], p.90). To calculate the particle optical
properties it is convenient to use Mishchenko’s T-matrix code for randomly oriented parti-
cles [Mishchenko and Travis, 1998] which returns the averaged phase matrix and extinction
matrix. The only drawback is that the single scattering data has to be transformed from the
particle frame representation to the laboratory frame representation. These transformations
are described in the appendix of Emde [2005].

12.2 SINGLE SCATTERING PROPERTIES 101

Only six elements of the transformed phase matrix, which is commonly called scattering
matrix F, are different. Therefore the size of pha mat data is:

[N f N T N za sca 1 1 1 6]
The order of the matrix elements is as follows: F11, F12, F22, F33, F34, F44
The extinction matrix is in this case diagonal and independent of direction and polarization.
That means that we need to store only one element for each frequency. Hence the size of
ext mat data is

[N f N T 1 1 1]
The absorption vector is also direction and polarization independent. Therefore the size of
abs vec data for this case is the same as ext mat data:

[N f N T 1 1 1]

Horizontally aligned plates and columns (p30) For particle distributions of horizontally
aligned plates and columns that are oriented randomly in the azimuth the angular dimension
can be reduced by one, if we rotate the coordinate system appropriately. For this case we
use the T-matrix code for single particles in fixed orientation and average phase matrix and
extinction matrix manually like in the general case.

The phase matrix (and also extinction matrix and absorption vector) become indepen-
dent of the incident azimuth angle in this frame. Furthermore, regarding the symmetry of
this case, it can be shown that for the scattered directions we need only half of the angu-
lar grids, as the two halves must contain the same data. pha mat data therefore has the
following size:

[N f N T N za sca N aa sca N za inc/2+1 1 16]
We store za sca for all grid points from 0◦to 180◦, aa sca from 0◦to 180◦, and za inc
from 0◦to 90◦. This means that the zenith angle grid has to include 90◦as grid-point. The
order of the matrix elements is the same as in the general case. For this case it can be
shown that the extinction matrix has only three elements Kjj, K12(=K21), and K34(=-K43).
Because of azimuthal symmetry, it can not depend on the azimuth angle. Hence the size of
ext mat data is

[N f N T N za/2+1 1 3]
The absorption coefficient vector has only two elements a1 and a2. This means that the size
of abs vec data is

[N f N T N za/2+1 1 2]

General case (p10) If there are no symmetries at all we have to store all 16 elements of
the phase matrix. The average phase matrix has to be generated from all individual phase
matrices of the particles in the distribution outside ARTS. The individual phase matrices
are calculated using Mishchenko’s T-matrix code for single particles in fixed orientation
[Mishchenko, 2000]. We have to store all elements for all angles in the grids. The size of
pha mat data is therefore:

[N f N T N za sca N aa sca N za inc N aa inc 16]
The matrix elements have to be stored in the following order: Z11, Z12, Z13, Z14, Z21,
Z22, ... Seven extinction matrix elements are independent (cp. Mishchenko et al. [2002],
p.55). The elements being equal for single particles should still be the equal for a distribu-
tion as we get the total extinction just by adding. Here we need only the incoming grids, so
the size of ext mat data is:

102 DESCRIPTION OF CLOUDS

[N f N T N za inc N aa inc 7]
The absorption vector in general has four components (cp. Equation (2.186) in Mishchenko
et al. [2002]). The size of abs vec data is accordingly:

[N f N T N za inc N aa inc 4]

Generating single scattering properties It is very convenient to use the PYTHON mod-
ule PyARTS, which has been developed especially for ARTS and which is freely available
at http://www.sat.uni-bremen.de/cgi-bin/cvsweb.cgi/PyARTS/. This
module can be used to generate single scattering properties for horizontally aligned as well
as for randomly oriented particles in the ARTS data-file-format. PyARTS has been devel-
oped by C. Davis, who has implemented the Monte Carlo scattering algorithm in ARTS
(see Section 14). The ATMLAB package includes functions to generate single scattering
properties for spherical particles (Mie-Theory).

12.3 Representation of the particle size distribution

The particle size has an important impact on the scattering and absorption properties of
cloud particles as shown for instance in [Emde et al., 2004]. Clouds contain a whole range
of different particle sizes, which can be described by a size distribution giving the number of
particles per unit volume per unit radius interval as a function of radius. It is most convenient
to parameterize the size distribution by analytical functions, because in this case optical
properties can be calculated much faster than for arbitrary size distributions. The T-matrix
code for randomly oriented particles includes several types of analytical size distributions,
e.g., the gamma distribution or the log-normal distribution. This section presents the size
distribution parameterizations, which were used for the ARTS simulations included in this
thesis.

12.3.1 Mono-disperse particle distribution

The most simple assumption is, that all particles in the cloud have the same size. In order to
study scattering effects like polarization or the influence of particle shape, it makes sense to
use this most simple assumption, because one can exclude effects resulting from the particle
size distribution itself.

Along with the single scattering properties we need the particle number density field,
which specifies the number of particles per cubic meter at each grid point, for ARTS scatter-
ing simulations. For a given IMC and mono-disperse particles the particle number density
np is simply

np(IMC, r) =
IMC

m
=
IMC

V ρ
=

3
4π

IMC

ρr3
, (12.2)

where m is the mass of a particle, r is its equal volume sphere radius, ρ is its density, and
V is its volume.

http://www.sat.uni-bremen.de/cgi-bin/cvsweb.cgi/PyARTS/
http://www.sat.uni-bremen.de/cgi-bin/cvsweb.cgi/PyARTS/

12.3 PARTICLE SIZE DISTRIBUTIONS 103

12.3.2 Gamma size distribution

A commonly used distribution for radiative transfer modeling in cirrus clouds is the gamma
distribution

n(r) = arα exp(−br). (12.3)

The dimensionless parameter α describes the width of the distribution. The other two pa-
rameters can be linked to the effective radius Reff and the ice mass content IMC as fol-
lows:

b = α+3
Reff

, (12.4)

a = IMC
4/3πρb−(α+4)Γ[α+4]

, (12.5)

where ρ is the density of the scattering medium and Γ is the gamma function. For cirrus
clouds ρ corresponds to the bulk density of ice, which is approximately 917 kg/m3.

Generally, the effective radius Reff is defined as the average radius weighted by the
particle cross-section

Reff =
1
〈A〉

∫ rmax

rmin

A(r)rn(r)dr, (12.6)

where A is the area of the geometric projection of a particle. The minimal and maximal
particle sizes in the distribution are given by rmin and rmax respectively. In the case of
spherical particles A = πr2. The average area of the geometric projection per particle 〈A〉
is given by

〈A〉 =

∫ rmax
rmin

A(r)n(r)dr∫ rmax
rmin

n(r)dr
. (12.7)

The question is how well a gamma distribution can represent the true particle size distri-
bution in radiative transfer calculations. This question is investigated by Evans et al. [1998].
The authors come to the conclusion that a gamma distribution represents the distribution of
realistic clouds quite well, provided that the parameters Reff , IMC and α are chosen cor-
rectly. They show that setting α = 1 and calculating only Reff gave an agreement within
15% in 90% of the considered measurements obtained during the First ISCCP Regional
Experiment (FIRE). Therefore, for all calculations including gamma size distributions for
ice particles, α = 1 was assumed.

The particle number density for size distributions is obtained by integration of the dis-
tribution function over all sizes:

np(IMC,Reff) =
∫∞

0 n(r)dr (12.8)

=
∫∞

0 arα exp(−br)dr = aΓ(α+1)
bα+1 . (12.9)

After setting α = 1, inserting Equation (12.5) and some simple algebra we obtain

np(IMC,Reff) =
2
π

IMC

ρR3
eff

. (12.10)

Comparing Equation (12.2) and (12.10), we see that the particle number density for mono-
disperse particles with a particle size of R is smaller than the particle number density for
gamma distributed particles with Reff = R. The reason is that in the gamma distribution
most particles are smaller than Reff .

104 DESCRIPTION OF CLOUDS

12.3.3 Ice particle size parameterization by McFarquhar and Heymsfield

A more realistic parameterization of tropical cirrus ice crystal size distributions was derived
by McFarquhar and Heymsfield [1997], who derived the size distribution as a function of
temperature and IMC. The parameterization was made based on observations during the
Central Equatorial Pacific Experiment (CEPEX). Smaller ice crystals with an equal volume
sphere radius of less than 50µm are parametrized as a sum of first-order gamma functions:

n(r) =
12 · IMC<50α

5
<50r

πρΓ(5)
exp(−2α<50r), (12.11)

where α<50 is a parameter of the distribution, and IMC<50 is the mass of all crystals
smaller than 50µm in the observed size distribution. Large ice crystals are represented
better by a log-normal function

n(r) =
3 · IMC>50

π3/2ρ
√

2 exp(3µ>50 + (9/2)σ2
>50)rσ>50r3

0

· exp

−1
2

(
log 2r

r0
− µ>50

σ>50

)2
 , (12.12)

where IMC>50 is the mass of all ice crystals greater than 50µm in the observed size
distribution, r0 = 1µm is a parameter used to ensure that the equation does not depend
on the choice of unit for r, σ>50 is the geometric standard deviation of the distribution,
and µ>50 is the location of the mode of the log-normal distribution. The fitted parameters
of the distribution can be looked up in the article by McFarquhar and Heymsfield [1997].
The particle number density field is obtained by numerical integration over a discrete set
of size bins. This parameterization of particle size has been implemented in the PyARTS
package, which was introduced in Section 12.2.2. Using PyARTS one can calculate the size
distributions, the corresponding single scattering properties and the particle number density
fields for given IMC and temperature.

12.4 Implementation

The workspace methods related to the description of clouds in ARTS are implemented in the
file m cloudbox.cc. Work space methods related to the optical properties of the clouds
are implemented in the file m optproperties.cc. The coordinate system transforma-
tions described above reside in the file optproperties.cc.

12.4.1 Work space methods and variables

The following controlfile section illustrates how a simple cloud can be included in an ARTS
calculation.

First we have to define the cloudbox region, i.e. the region where scattering objects are
found. To do this we use the method cloudboxSetManuallyAltitude:

cloudboxSetManuallyAltitude(cloudbox_on, cloudbox_limits,
atmosphere_dim, p_grid,
lat_grid, lon_grid,

12.4 IMPLEMENTATION 105

8000, 120000,
0, 0, 0, 0)

If we want to do a simulation for a cirrus cloud at an altitude from 9 to 11 km the cloudbox
limits can be set to 8 and 12 km. The latitude and longitude limits are set to an arbitrary
value for a 1D calculation. For 3D calculations they are also needed. Alternatively one can
use the method cloudboxSetManually, where one has to provide pressure instead of
altitude limits.

Now we have to specify the cloud particles inside the scattering region:

Initialisation
ParticleTypeInit
Only one particle type is added in this example
ParticleTypeAdd(scat_data_raw, pnd_field_raw,

atmosphere_dim, f_grid, p_grid,
lat_grid, lon_grid, cloudbox_limits,
"ssd_sphere_50um_p20.xml",
"pnd_sphere_50um_p20.xml")

In the workspace method ParticleTypeAdd the single scattering properties for one par-
ticle type are read. The generic input filename scat data must be set to the filename
of a datafile including scattering data (class SingleScatteringData) in xml-format.
The generic input filename pnd field must contain the filename of the correspond-
ing particle number density field in xml-format (class GField3). If the cloud is composed
of several different particle types ParticleTypeAdd can be used repeatedly for all par-
ticle types, for instance one could add to the randomly oriented spherical particles above
horizontally aligned cylindrical particles:

ParticleTypeAdd(scat_data_raw, pnd_field_raw,
atmosphere_dim, f_grid, p_grid,
lat_grid, lon_grid, cloudbox_limits,
"ssd_cylinder_30um_p30.xml",
"pnd_cylinder_30um_p30.xml")

Alternatively it is possible to use the method ParticleTypeAddAll, which is conve-
nient to generate a size distribution using several size bins. In this case one needs to define
one particle type for each size bin. For many size bins the control file becomes very lengthy
if one uses ParticleTypeAdd repeatedly. ParticleTypeAddAll requires as input
an array of string including all filenames of the single scattering data files and the vari-
able pnd field raw which includes the particle number density fields for all particle
types. Using this function, one has to make sure that the order of the filenames containing
the single scattering data corresponds to the order of the particle number density fields in
pnd field raw. After reading the data the workspace variable pnd field is calculated
using pnd fieldCalc:

Calculate the particle number density field
pnd_fieldCalc

106 DESCRIPTION OF CLOUDS

The definition of the single scattering data along with the corresponding particle number
density fields is common in both scattering modules, the DOIT module described in Chapter
13 and the Monte Carlo module described in Chapter 14.

Chapter 13

Scattering - DOIT module

The Discrete Ordinate ITerative (DOIT) method is one of the scattering algorithms in ARTS.
Besides the DOIT method a backward Monte Carlo scheme has been implemented (see Sec-
tion 14). The DOIT method is unique because a discrete ordinate iterative method is used
to solve the scattering problem in a spherical atmosphere. Although the DOIT module is
implemented for 1D and 3D atmospheres, it is strongly recommended to use it only for 1D,
because the Monte Carlo module (Chapter 14) is much more appropriate for 3D calulations.
More appropriate in the sense that it is much more efficient. A literature review about scat-
tering models for the microwave region, which is presented in Emde and Sreerekha [2004],
shows that former implementations of discrete ordinate schemes are only applicable for
(1D-)plane-parallel or 3D-cartesian atmospheres. All of these algorithms can not be used
for the simulation of limb radiances. A description of the DOIT method, similar to what is
presented in this chapter, has been published in Emde et al. [2004] and in Emde [2005].

13.1 The discrete ordinate iterative method

13.1.1 Radiation field

The Stokes vector depends on the position in the cloud box and on the propagation direction
specified by the zenith angle (ψ) and the azimuth angle (ω). All these dimensions are
discretized inside the model; five numerical grids are required to represent the radiation
field I:

~P = {P1, P2, ..., PNP },
~α = {α1, α2, ..., αNα},
~β = {β1, β2, ..., βNβ}, (13.1)
~ψ = {ψ1, ψ2, ..., ψNψ},

History
020601 Created and written by Claudia Emde
050223 Rewritten by Claudia Emde, mostly taken from Chapter 4 of Claudia’s

PhD thesis
050929 Included technical part, example contol file

108 SCATTERING - DOIT MODULE

~ω = {ω1, ω2, ..., ωNω}.
Here ~P is the pressure grid, ~α is the latitude grid and ~β is the longitude grid. The radiation
field is a set of Stokes vectors (NP ×Nα ×Nβ ×Nψ ×Nω elements) for all combinations
of positions and directions:

I = {I1(P1, α1, β1, ψ1, ω1), I2(P2, α1, β1, ψ1, ω1), ...,
INP×Nα×Nβ×Nψ×Nω(PNP , αNα , βNβ , ψNψ , ωNω)}. (13.2)

In the following we will use the notation

i = 1 . . . NP

j = 1 . . . Nα

I = {Iijklm} k = 1 . . . Nβ. (13.3)

l = 1 . . . Nψ

m = 1 . . . Nω

13.1.2 Vector radiative transfer equation solution

Figure 13.1 shows a schematic of the iterative method, which is applied to solve the vector
radiative transfer equation (21.35)

dI(n, ν, T)
ds

= − 〈K(n, ν, T)〉 I(n, ν, T) + 〈a(n, ν, T)〉B(ν, T) (13.4)

+
∫

4π dn′ 〈Z(n,n′, ν, T)〉 I(n′, ν, T), (13.5)

where I is the specific intensity vector, 〈K〉 is the ensemble-averaged extinction matrix,
〈a〉 is the ensemble-averaged absorption vector, B is the Planck function and 〈Z〉 is the
ensemble-averaged phase matrix. Furthermore ν is the frequency of the radiation, T is the
temperature, ds is a path-length-element of the propagation path and n the propagation
direction. Equation (21.35) is explained more detailed in Section 21.5.

The first guess field

I(0) =
{
I(0)
ijklm

}
, (13.6)

is partly determined by the boundary condition given by the radiation coming from the clear
sky part of the atmosphere traveling into the cloud box. Inside the cloud box an arbitrary
field can be chosen as a first guess. In order to minimize the number of iterations it should
be as close as possible to the solution field.

The next step is to solve the scattering integrals〈
S(0)
ijklm

〉
=
∫

4π
dn′ 〈Zijklm〉 I(0)

ijklm, (13.7)

using the first guess field, which is now stored in a variable reserved for the old radiation
field. For the integration we use equidistant angular grids in order to save computation time
(cf. Section 13.3.1). The radiation field, which is generally defined on finer angular grids
(~ω, ~ψ), is interpolated on the equidistant angular grids. The integration is performed over all

13.1 THE DISCRETE ORDINATE ITERATIVE METHOD 109

field

yes

no

old radiation field

new radiation field solution field

convergence

test

radiative transfer step

(averaged quantities)

scattering intergral

first guess field

Figure 13.1: Schematic of the iterative method to solve the VRTE in the cloud box.

incident directions n′ for each propagation direction n. The evaluation of the scattering in-
tegral is done for all grid points inside the cloud box. The obtained integrals are interpolated
on ~ω and ~ψ. The result is the first guess scattering integral field S0:

S(0) =
{〈

S(0)
ijklm

〉}
. (13.8)

Figure 13.2 shows a propagation path step from a grid point P = (Pi, αj , βk) into
direction n = (ψl, ωm). The radiation arriving at P from the direction n′ is obtained by
solving the linear differential equation:

dI(1)

ds
= −〈K〉I(1) + 〈a〉 B̄ +

〈
S(0)

〉
, (13.9)

where 〈K〉, 〈a〉, B̄ and
〈
S(0)

〉
are averaged quantities. This equation can be solved ana-

lytically for constant coefficients. Multi-linear interpolation gives the quantities K′,a′,S′

and T ′ at the intersection point P′. To calculate the radiative transfer from P′ towards P
all quantities are approximated by taking the averages between the values at P′ and P. The
average value of the temperature is used to get the averaged Planck function B̄.

The solution of Equation (13.9) is found analytically using a matrix exponential ap-
proach:

I(1) = e−〈K〉sI(0) +
(
I− e−〈K〉s

)
〈K〉−1

(
〈a〉 B̄ +

〈
S(0)

〉)
, (13.10)

where I denotes the identity matrix and I(0) the initial Stokes vector. The radiative transfer
step from P′ to P is calculated, therefore I(0) is the incoming radiation at P′ into direction

110 SCATTERING - DOIT MODULE

(θ , φm)l

(θ , φm)’
l
’

(j , βk)pi , α

, j−1α , β k)i−1p(

(j , βk)pi , α’ ’ ’

p(i+1, α ,β k)j p(i+1, α j+1, β

p(i α j+1, β k,

k

)

)

Figure 13.2: Path from a grid point ((Pi, αj , βk) - (×)) to the intersection point
((P ′i , α′j , β′k) - (◦)) with the next grid cell boundary. Viewing direction is specified by
(ψl, ωm) at (×) or (ψ′l, ω

′
m) at (◦).

(ψ′l, ω
′
m), which is the first guess field interpolated on P′. This radiative transfer step calcu-

lation is done for all points inside the cloud box in all directions. The resulting set of Stokes
vectors (I(1) for all points in all directions) is the first order iteration field I(1):

I(1) =
{
I(1)
ijklm

}
. (13.11)

The first order iteration field is stored in a variable reserved for the new radiation field.
In the convergence test the new radiation field is compared to the old radiation field.

For the difference field, the absolute values of all Stokes vector elements for all cloud box
positions are calculated. If one of the differences is larger than a requested accuracy limit,
the convergence test is not fulfilled. The user can define different convergence limits for the
different Stokes components.

If the convergence test is not fulfilled, the first order iteration field is copied to the
variable holding the old radiation field, and is then used to evaluate again the scattering
integral at all cloud box points:〈

S(1)
ijklm

〉
=
∫

4π
dn′ 〈Z〉 I(1)

ijklm. (13.12)

The second order iteration field

I(2) =
{
I(2)
ijklm

}
, (13.13)

is obtained by solving

dI(2)

ds
= −〈K〉I(2) + 〈a〉 B̄ +

〈
S(1)

〉
, (13.14)

13.1 THE DISCRETE ORDINATE ITERATIVE METHOD 111

for all cloud box points in all directions. This equation contains already the averaged values
and is valid for specified positions and directions.

As long as the convergence test is not fulfilled the scattering integral fields and higher
order iteration fields are calculated alternately.

We can formulate a differential equation for the n-th order iteration field. The scattering
integrals are given by〈

S(n−1)
ijklm

〉
=
∫

4π
dn′ 〈Z〉 I(n−1)

ijklm , (13.15)

and the differential equation for a specified grid point into a specified direction is

dI(n)

ds
= −〈K〉I(n) + 〈a〉 B̄ +

〈
S(n−1)

〉
. (13.16)

Thus the n-th order iteration field

I(n) =
{
I(n)
ijklm

}
, (13.17)

is given by

I(n) = e−〈K〉s + ·I(n−1)(I− e−〈K〉s)〈K〉−1
(〈a〉 B̄ +

〈
S(n−1)

〉
), (13.18)

for all cloud box points and all directions defined in the numerical grids.
If the convergence test∣∣∣I(N)

ijklm (Pi, αj , βk, ψl, ωm)− I(N−1)
ijklm (Pi, αj , βk, ψl, ωm)

∣∣∣ < ε, (13.19)

is fulfilled, a solution to the vector radiative transfer equation (21.35) has been found:

I(N) =
{
I(N)
ijklm

}
. (13.20)

13.1.3 Scalar radiative transfer equation solution

In analogy to the scattering integral vector field the scalar scattering integral field is ob-
tained:〈

S
(0)
ijklm

〉
=
∫

4π
dn′ 〈Z11〉 I(0)

ijklm. (13.21)

The scalar radiative transfer equation (21.45) with a fixed scattering integral is

dI(1)

ds
= −〈K11〉 I(1) + 〈a1〉B +

〈
S(0)

〉
. (13.22)

Assuming constant coefficients this equation is solved analytically after averaging extinc-
tion coefficients, absorption coefficients, scattering vectors and the temperature. The aver-
aging procedure is done analogously to the procedure described for solving the VRTE. The
solution of the averaged differential equation is

I(1) = I(0)e−〈K11〉s +
〈a1〉 B̄ +

〈
S(0)

〉
〈K11〉

(
1− e−〈K11〉s

)
, (13.23)

112 SCATTERING - DOIT MODULE

where I(0) is obtained by interpolating the initial field, and 〈K11〉, 〈a1〉, B̄ and
〈
S(0)

〉
are

the averaged values for the extinction coefficient, the absorption coefficient, the Planck
function and the scattering integral respectively. Applying this equation leads to the first
iteration scalar intensity field, consisting of the intensities I(1) at all points in the cloud box
for all directions.

As the solution to the vector radiative transfer equation, the solution to the scalar radia-
tive transfer equation is found numerically by the same iterative method. The convergence
test for the scalar equation compares the values of the calculated intensities of two succes-
sive iteration fields.

13.1.4 Single scattering approximation

The DOIT method uses the single scattering approximation, which means that for one prop-
agation path step the optical depth is assumed to be much less than one so that multiple-
scattering can be neglected along this propagation path step. It is possible to choose a rather
coarse grid inside the cloud box. The user can define a limit for the maximum propagation
path step length. If a propagation path step from one grid cell to the intersection point with
the next grid cell boundary is greater than this value, the path step is divided in several steps
such that all steps are less than the maximum value. The user has to make sure that the
optical depth due to cloud particles for one propagation path sub-step is is sufficiently small
to assume single scattering. The maximum optical depth due to ice particles is

τmax = 〈Kp〉 ·∆s, (13.24)

where ∆s is the length of a propagation path step. In all simulations presented in Emde
[2005], τmax � 0.01 is assumed. This threshold value is also used in Czekala [1999]. The
radiative transfer calculation is done along the propagation path through one grid cell. All
coefficients of the VRTE are interpolated linearly on the propagation path points.

13.2 Sequential update

In the previous Section 13.1 the iterative solution method for the VRTE has been described.
For each grid point inside the cloud box the intersection point with the next grid cell bound-
ary is determined in each viewing direction. After that, all the quantities involved in the
VRTE are interpolated onto this intersection point. As described in the sections above, the
intensity field of the previous iteration is taken to obtain the Stokes vector at the intersec-
tion point. Suppose that there are N pressure levels inside the cloud box. If the radiation
field is updated taking into account for each grid point only the adjacent grid cells, at least
N -1 iterations are required until the scattering effect from the lower-most pressure level has
propagated throughout the cloud box up to the uppermost pressure level. From these con-
siderations, it follows, that the number of iterations depends on the number of grid points
inside the cloud box. This means that the original method is very ineffective where a fine
resolution inside the cloud box is required to resolve the cloud inhomogeneities.

A solution to this problem is the “sequential update of the radiation field”, which is
shown schematically in Figure 13.3. For simplicity it will be explained in detail for a 1D
cloud box. We divide the update of the radiation field, i.e., the radiative transfer step cal-
culations for all positions and directions inside the cloud box, into three parts: Update for

13.2 SEQUENTIAL UPDATE 113

“up-looking” zenith angles (0◦ ≤ ψup ≤ 90◦), for “down-looking” angles (ψlimit ≤ ψdown

≤ 180◦) and for “limb-looking” angles (90◦ < ψlimb < ψlimit). The “limb-looking” case
is needed, because for angles between 90◦ and ψlimit the intersection point is at the same
pressure level as the observation point. The limiting angle ψlimit is calculated geometrically.
Note that the propagation direction of the radiation is opposite to the viewing direction or
the direction of the line of sight, which is indicated by the arrows. In the 1D case the radia-
tion field is a set of Stokes vectors each of which depend upon the position and direction:

I = {I (Pi, ψl)} . (13.25)

limb

limb

limb

limb

down

down

up

up

up

θ

θ

θ

θ

θ

θ

θ

θ
θ

p
N

p
0

θ
down

Figure 13.3: Schematic of the sequential update (1D) showing the three different parts: “up-
looking” corresponds to zenith angles ψup, “limb-looking” corresponds to ψlimb “down-
looking” corresponds to ψdown.

The boundary condition for the calculation is the incoming radiation field on the cloud
box boundary Ibd:

Ibd = {I (Pi, ψl)} where Pi = PN ∀ψl ∈ [0, ψlimit]
Pi = P0 ∀ψl ∈ (ψlimit, 180◦], (13.26)

where P0 and PN are the pressure coordinates of the lower and upper cloud box boundaries
respectively. For down-looking directions, the intensity field at the lower-most cloud box
boundary and for up- and limb-looking directions the intensity field at the uppermost cloud
box boundary are the required boundary conditions respectively.

13.2.1 Up-looking directions

The first step of the sequential update is to calculate the intensity field for the pressure
coordinate PN−1, the pressure level below the uppermost boundary, for all up-looking di-
rections. Radiative transfer steps are calculated for paths starting at the uppermost boundary
and propagating to the (N − 1) pressure level. The required input for this radiative transfer

114 SCATTERING - DOIT MODULE

step are the averaged coefficients of the uppermost cloud box layer and the Stokes vectors
at the uppermost boundary for all up-looking directions. These are obtained by interpolat-
ing the boundary condition Ibd on the appropriate zenith angles. Note that the zenith angle
of the propagation path for the observing direction ψl does not equal ψ′l at the intersection
point due to the spherical geometry. If ψl is close to 90◦ this difference is most significant.

To calculate the intensity field for the pressure coordinate PN−2, we repeat the calcula-
tion above. We have to calculate a radiative transfer step from the (N − 1) to the (N − 2)
pressure level. As input we need the interpolated intensity field at the (N − 1) pressure
level, which has been calculated in the last step.

For each pressure level (m − 1) we take the interpolated field of the layer above
(I(Pm)(1)). Using this method, the scattering influence from particles in the upper-most
cloud box layer can propagate during one iteration down to the lower-most layer. This
means that the number of iterations does not scale with the number of pressure levels, which
would be the case without sequential update.

The radiation field at a specific point in the cloud box is obtained by solving Equation
(13.10). For up-looking directions at position Pm−1 we may write:

I (Pm−1, ψup)(1) = e−〈K(ψup)〉sI (Pm, ψup)(1)

+
(
I− e−〈K(ψup)〉s

)
〈K(ψup)〉−1

(
〈a(ψup)〉 B̄ +

〈
S (ψup)(0)

〉)
. (13.27)

For simplification we write

I(Pm−1, ψup)(1) = A(ψup)I (Pm, ψup)(1) + B(ψup). (13.28)

Solving this equation sequentially, starting at the top of the cloud and finishing at the bottom,
we get the updated radiation field for all up-looking angles.

I(Pi, ψup)(1) =
{
I(1) (Pi, ψl)

}
∀ ψl ∈ [0, 90◦]. (13.29)

13.2.2 Down-looking directions

The same procedure is done for down-looking directions. The only difference is that the
starting point is the lower-most pressure level P1 and the incoming clear sky field at the
lower cloud box boundary, which is interpolated on the required zenith angles, is taken as
boundary condition. The following equation is solved sequentially, starting at the bottom of
the cloud box and finishing at the top:

I(Pm, ψdown)(1) = A(ψdown)I (Pm−1, ψdown)(1) + B(ψdown). (13.30)

This yields the updated radiation field for all down-looking angles.

I(Pi, ψdown)(1) =
{
I(1) (Pi, ψl)

}
∀ ψl ∈ [ψlimit, 180◦]. (13.31)

13.2.3 Limb directions

A special case for limb directions, which correspond to angles slightly above 90◦ had to
be implemented. If the tangent point is part of the propagation path step, the intersection
point is exactly at the same pressure level as the starting point. In this case the linearly

13.3 NUMERICAL ISSUES 115

interpolated clear sky field is taken as input for the radiative transfer calculation, because
we do not have an already updated field for this pressure level:

I(Pm, ψlimb)(1) = A(ψlimb)I (Pm, ψlimb)(0) + B(ψlimb) (13.32)

By solving this equation the missing part of the updated radiation field is obtained

I(Pi, ψlimb)(1) = {I (Pi, ψl)} ∀ ψl ∈]90◦, ψlimit[(13.33)

For all iterations the sequential update is applied. Using this method the number of iterations
depends only on the optical thickness of the cloud or on the number of multiple-scattering
events, not on the number of pressure levels.

13.3 Numerical Issues

13.3.1 Grid optimization and interpolation

The accuracy of the DOIT method depends very much on the discretization of the zenith
angle. The reason is that the intensity field strongly increases at about ψ = 90◦. For an-
gles below 90◦ (“up-looking” directions) the intensity is very small compared to angles
above 90◦ (“down-looking” directions), because the thermal emission from the lower at-
mosphere and from the ground is much larger than thermal emission from trace gases in
the upper atmosphere. Figure 13.4 shows an example intensity field as a function of zenith
angle for different pressure levels inside a cloud box, which is placed from 7.3 to 12.7 km
altitude, corresponding to pressure limits of 411 hPa and 188 hPa respectively. The cloud
box includes 27 pressure levels. The frequency of the sample calculation was 318 GHz. A
midlatitude-summer scenario including water vapor, ozone, nitrogen and oxygen was used.
The atmospheric data was taken from the FASCOD [Anderson et al., 1986] and the spectro-
scopic data was obtained from the HITRAN database [Rothman et al., 1998]. For simplicity
this 1D set-up was chosen for all sample calculations in this section. As the intensity (or the
Stokes vector) at the intersection point of a propagation path is obtained by interpolation,
large interpolation errors can occur for zenith angles of about 90◦ if the zenith angle grid
discretization is too coarse. Taking a very fine equidistant zenith angle grid leads to very
long computation times. Therefore a zenith angle grid optimization method is required.

For the computation of the scattering integral it is possible to take a much coarser zenith
angle resolution without losing accuracy. It does not make sense to use the zenith angle grid,
which is optimized to represent the radiation field with a certain accuracy. The integrand
is the product of the phase matrix and the radiation field. The peaks of the phase matrices
can be at any zenith angle, depending on the incoming and the scattered directions. The
multiplication smooths out both the radiation field increase at 90◦ and the peaks of the
phase matrices. Test calculations have shown that an increment of 10◦ is sufficient. Taking
the equidistant grid saves the computation time of the scattering integral to a very large
extent, because much less grid points are required.

Zenith angle grid optimization

As a reference field for the grid optimization the DOIT method is applied for an empty
cloud box using a very fine zenith angle grid. The grid optimization routine finds a reduced

116 SCATTERING - DOIT MODULE

0 20 40 60 80 100 120 140 160 180
0

50

100

150

200

250

300

Zenith angle [°]

B
T

[K
]

p = 411 hPa
p = 346 hPa
p = 290 hPa
p = 242 hPa

Figure 13.4: Intensity field for different pressure levels.

zenith angle grid which can represent the intensity field with the desired accuracy. It first
takes the radiation at 0◦ and 180◦ and interpolates between these two points on all grid
points contained in the fine zenith angle grid for all pressure levels. Then the differences
between the reference radiation field and the interpolated field are calculated. The zenith
angle grid point, where the difference is maximal is added to 0◦ and 180◦. After that the
radiation field is interpolated between these three points forming part of the reduced grid
and again the grid point with the maximum difference is added. Using this method more
and more grid points are added to the reduced grid until the maximum difference is below a
requested accuracy limit.

The top panel of Figure 13.5 shows the clear sky radiation in all viewing directions for
a sensor located at 13 km altitude. This result was obtained with a switched-off cloud box.
The difference between the clear sky part of the ARTS model and the scattering part is that
in the clear sky part the radiative transfer calculations are done along the line of sight of
the instrument whereas inside the cloud box the RT calculations are done as described in
the previous section to obtain the full radiation field inside the cloud box. In the clear sky
part the radiation field is not interpolated, therefore we can take the clear sky solution as the
exact solution.

The interpolation error is the relative difference between the exact clear sky calculation
(cloud box switched off) and the clear sky calculation with empty cloud box. The bottom
panels of Figure 13.5 show the interpolation errors for zenith angle grids optimized with
three different accuracy limits (0.1%, 0.2% and 0.5%.). The left plot shows the critical re-
gion close to 90◦. For a grid optimization accuracy of 0.5% the interpolation error becomes
very large, the maximum error is about 8%. For grid accuracies of 0.2% and 0.1% the max-
imum interpolation errors are about 0.4% and 0.2% respectively. However for most angles

13.3 NUMERICAL ISSUES 117

0 20 40 60 80 100 120 140 160 180
0

100

200

300

Zenith angle [°]

B
T

[K
]

clearsky

90 95 100 105
−0.5

0

0.5

1

Zenith angle [°]

In
te

rp
ol

at
io

n
er

ro
r [

 %
]

acc: 0.1%
acc: 0.2%
acc: 0.5%

100 120 140 160 180
−0.15

−0.1

−0.05

0

0.05

0.1

Zenith angle [°]

In
te

rp
ol

at
io

n
er

ro
r [

 %
]

acc: 0.1%
acc: 0.2%
acc: 0.5%

Figure 13.5: Interpolation errors for different grid accuracies. Top panel: Clear sky radiation
simulated for a sensor at an altitude of 13 km for all viewing directions. Bottom left: Grid
optimization accuracy for limb directions. Bottom right: Grid optimization accuracy for
down-looking directions.

it is below 0.2%, for all three cases. For down-looking directions from 100◦ to 180◦ the
interpolation error is at most 0.14% for grid accuracies of 0.2% and 0.5% and for a grid
accuracy of 0.1% it is below 0.02%.

Interpolation methods

Two different interpolation methods can be chosen in ARTS for the interpolation of the radi-
ation field in the zenith angle dimension: linear interpolation or three-point polynomial in-
terpolation. The polynomial interpolation method produces more accurate results provided
that the zenith angle grid is optimized appropriately. The linear interpolation method on the
other hand is safer. If the zenith angle grid is not optimized for polynomial interpolation
one should use the simpler linear interpolation method. Apart from the interpolation of the
radiation field in the zenith angle dimension linear interpolation is used everywhere in the
model. Figure 13.6 shows the interpolation errors for the different interpolation methods.
Both calculations are performed on optimized zenith angle grids, for polynomial interpola-
tion 65 grid points were required to achieve an accuracy of 0.1% and for linear interpolation
101 points were necessary to achieve the same accuracy. In the region of about 90◦ the

118 SCATTERING - DOIT MODULE

interpolation errors are below 1.2% for linear interpolation and below 0.2% for polynomial
interpolation. For the other down-looking directions the differences are below 0.08% for
linear and below 0.02% for polynomial interpolation. It is obvious that polynomial interpo-
lation gives more accurate results. Another advantage is that the calculation is faster because
less grid points are required, although the polynomial interpolation method itself is slower
than the linear interpolation method. Nevertheless, we have implemented the polynomial
interpolation method so far only in the 1D model. In the 3D model, the grid optimization
needs to be done over the whole cloud box, where it is not obvious that one can save grid
points. Applying the polynomial interpolation method using non-optimized grids can yield
much larger interpolation errors than the linear interpolation method.

90 95 100 105
−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

Zenith angle [°]

In
te

rp
ol

at
io

n
Er

ro
r [

 %
]

linear
polynomial

100 120 140 160 180
−0.04

−0.02

0

0.02

0.04

0.06

0.08

Zenith angle [°]

In
te

rp
ol

at
io

n
Er

ro
r [

 %
]

linear
polynomial

Figure 13.6: Interpolation errors for polynomial and linear interpolation.

Error estimates

The interpolation error for scattering calculations can be estimated by comparison of a scat-
tering calculation performed on a very fine zenith angle grid (resolution 0.001◦ from 80◦ to
100◦) with a scattering calculation performed on an optimized zenith angle grid with 0.1%
accuracy. The cloud box used in previous test calculations is filled with spheroidal particles
with an aspect ratio of 0.5 from 10 to 12 km altitude. The ice mass content is assumed to be
4.3 · 10−3 g/m3 at all pressure levels. An equal volume sphere radius of 75µm is assumed.
The particles are either completely randomly oriented (p20) or azimuthally randomly ori-
ented (p30) (cf. Section 12.2.3). The top panels of Figure 13.7 show the interpolation errors
of the intensity. For both particle orientations the interpolation error is in the same range
as the error for the clear sky calculation, below 0.2 K. The bottom panels show the inter-
polation errors for Q. For the randomly oriented particles the error is below 0.5%. For the
horizontally aligned particles with random azimuthal orientation it goes up to 2.5% for a
zenith angle of about 91.5◦. It is obvious that the interpolation error for Q must be larger
than that for I because the grid optimization is accomplished using only the clear-sky field,
where the polarization is zero. Only the limb directions about 90◦ are problematic, for other
down-looking directions the interpolation error is below 0.2%.

13.3 NUMERICAL ISSUES 119

90 95 100 105
−0.2

−0.1

0

0.1

0.2

0.3

Zenith angle [°]

In
te

rp
ol

at
io

n
E

rr
or

 I
[%

]

p20
p30

100 120 140 160 180
−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

Zenith angle [°]

In
te

rp
ol

at
io

n
E

rr
or

 I
[%

]
p20
p30

90 95 100 105
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Zenith angle [°]

In
te

rp
ol

at
io

n
E

rr
or

 Q
 [

%
]

p20
p30

100 120 140 160 180
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

Zenith angle [°]

In
te

rp
ol

at
io

n
E

rr
or

 Q
 [

%
]

p20
p30

Figure 13.7: Interpolation errors for a scattering calculation. Left panels: Interpolation
errors for limb directions. Right panels: Interpolation errors for down-looking directions.
Top: Intensity I , Bottom: Polarization difference Q

120 SCATTERING - DOIT MODULE

13.4 Implementation

The workspace methods required for DOIT calculations are implemented in the files
m scatrte.cc, m cloudbox.cc and m optproperties.cc.

13.4.1 1D control file example

This example demonstrates how to set up a 1D DOIT calculation. A full running controlfile
example for a DOIT calculation can be found in the ARTS package in the tests/DOIT di-
rectory. The file is called TestDOIT.arts. For detailed descriptions of the workspace
methods and variables please refer also to the online help (arts -d ...).

13.4.2 DOIT frame

As a first step for a DOIT calculation we have to calculate the incoming field on the bound-
ary of the cloudbox. This is done using the workspace method CloudboxGetIncoming:

CloudboxGetIncoming

The next step is the initialization of variables required for a DOIT calculation using
DoitInit:

DoitInit

The grid discretization plays a very significant role in discrete ordinate methods. In spher-
ical geometry the zenith angular grid is of particular importance (cf. Section 13.3.1). The
angular discretization is defined in the workspace method DoitAngularGridsSet:

DoitAngularGridsSet(doit_za_grid_size,
scat_aa_grid, scat_za_grid,
19, 10, "doit_za_grid_opt.xml")

For down-looking geometries it is sufficient to define the generic inputs:
N za grid Number of grid points in zenith angle grid, recommended value: 19
N aa grid Number of grid points in azimuth angle grid, recommended value: 37

From these numbers equally spaced grids are created and stored in the work space variables
scat za grid and scat aa grid.

For limb simulations it is important to use an optimized zenith angle grid with a very
fine resolution about 90◦ for the RT calculations. Such a grid can be generated using the
workspace method doit za grid optCalc. Please refer to the online documentation
of this method. The filename of the optimized zenith angle grid can be given as a generic
input. If a filename is given, the equidistant grid is taken for the calculation of the scattering
integrals and the optimized grid is taken for the radiative transfer part. Otherwise, if no
filename is specified (za grid opt file = "") the equidistant grid is taken for the
calculation of the scattering integrals and for the radiative transfer calculations. This option
makes sense for down-looking cases to speed up the calculation.

The main agenda for a DOIT calculation is doit mono agenda. The agenda is exe-
cuted by the workspace method ScatteringDoit:

ScatteringDoit

13.4 IMPLEMENTATION 121

The DOIT main agenda

The agenda doit main agenda requires the incoming clearsky field on the cloudbox
boundary as an input and gives as output the scattered field on the cloudbox boundary if the
sensor is placed outside the cloudbox or the full scattered field in the cloudbox if the sensor
is placed inside the cloudbox.

AgendaSet(doit_mono_agenda){
Prepare scattering data for DOIT calculation (Optimized method):

DoitScatteringDataPrepare
Alternative method (needs less memory):
scat_data_monoCalc
Set first guess field:

doit_i_fieldSetClearsky
Perform iterations: 1. scattering integral. 2. RT calculations with
fixed scattering integral field, 3. convergence test

doit_i_fieldIterate
Put solution into interface for clearsky calculation

DoitCloudboxFieldPut
}

The first method DoitScatteringDataPrepare reads the single scattering data and
interpolates it on the requested frequency. It also performs the transformation from the scat-
tering frame into the laboratory frame. Alternatively the method scat data monoCalc
can be used. In this case only the frequency interpolation is done and the transformations
are done later. The advantage is that this method needs less memory. For 1D calculation
it is recommended to use DoitScatteringDataPrepare because it is much more
efficient.

The method doit i fieldSetClearsky interpolates the incoming radiation field
on all points inside the cloudbox to obtain the initial field (doit i field) for the DOIT
calculation. As a test one can alternatively start with a constant radiation field using the
method doit i fieldSetConst.

The iteration is performed in the method doit i fieldIterate, which includes
the calculation of the scattering integral field (doit scat field), the radiative transfer
calculations in the cloudbox with fixed scattering integral and the convergence test.

After convergence is obtained the radiation field inside the cloudbox is stored in the
interface variable scat i p if the sensor is located outside the cloudbox, or in the variable
doit i field1D spectrum if the sensor is located inside the cloudbox. This is done
by the workspace method DoitCloudboxFieldPut. In contrast to doit i field
the interface variables include an additional dimension for the frequency.

Agendas used in doit i fieldIterate

There are several methods which can be used in doit i fieldIterate, for instance
for the calculation of the scattering integral. The methods are selected in the control-file by
defining several agendas.

122 SCATTERING - DOIT MODULE

Calculation of the scattering integral: To calculate the scattering integral (Equation
(13.7)) the phase matrix (pha mat) is required. How the phase matrix is calculated is
defined in the agenda pha mat spt agenda:

Calculation of the phase matrix
AgendaSet(pha_mat_spt_agenda){
Optimized option:

pha_mat_sptFromDataDOITOpt
Alternative option:
pha_mat_sptFromMonoData
}

If in doit mono agenda the optimized method DoitScatteringDataPrepare is
used we have to use here the corresponding method pha mat sptFromDataDOITOpt.
Otherwise we have to use pha mat sptFromMonoData.

To do the integration itself, we have to define doit scat field agenda:

AgendaSet(doit_scat_field_agenda){
doit_scat_fieldCalcLimb
Alternative:
doit_scat_fieldCalc
}

Here we have two options. One is doit scat fieldCalcLimb, which should be used
for limb simulations, for which we need a fine zenith angle grid resolution to represent
the radiation field. This method has to be used if a zenith angle grid file is given in
DoitAngularGridsSet. The scattering integral can be calculated on a coarser grid
resolution, hence in doit scat fieldCalcLimb, the radiation field is interpolated on
the equidistant angular grids specified in DoitAngularGridsSet by the generic inputs
Nza and Naa. Alternatively, one can use doit scat fieldCalc, where this interpo-
lation is not performed. This function is efficient for simulations in up- or down-looking
geometry, where the we do not need the fine zenith angle grid resolution about 90◦.

Radiative transfer with fixed scattering integral term: With a fixed scattering inte-
gral field the radiative transfer equation can be solved (Equation (13.9)). The workspace
method to be used for this calculation is defined in doit rte agenda. The most effi-
cient and recommended workspace method is doit i fieldUpdateSeq1D where the
sequential update which is described in Section 13.2 is applied. The workspace method
doit i fieldUpdate1D does the same calculation without sequential update and is
therefore much less efficient because the number of iterations depends in this case on the
number of pressure levels in the cloudbox. Other options are to use a plane-parallel ap-
proximation implemented in the workspace method doit i fieldUpdateSeq1DPP.
This method is not much more efficient than doit i fieldUpdateSeq1D, therefore it
is usually better to use doit i fieldUpdateSeq1D since it is more accurate.

AgendaSet(doit_rte_agenda){
doit_i_fieldUpdateSeq1D

Alternatives:

13.4 IMPLEMENTATION 123

doit_i_fieldUpdateSeq1DPP
i_fieldUpdate1D
}

The optical properties of the particles, i.e., extinction matrix and absorption vector are
required for solving the radiative transfer equation. How they are calculated is speci-
fied in spt calc agenda. The workspace method opt prop sptFromMonoData
requires that the raw data is already interpolated on the frequency of the monochro-
matic calculation. This requirement is fulfilled when DoitScatteringDataPrepare
of scat data monoCalc is executed before doit i fieldIterate (see Section
13.4.2). The work space method ext matAddPart and abs vecAddPart are used to
extract the absorption vector abs vec and extinction matrix ext mat from the workspace
variable opt prop spt. The gas absorption is added internally.

AgendaSet(spt_calc_agenda){
opt_prop_sptFromMonoData

}
AgendaSet(opt_prop_part_agenda){

ext_matInit
abs_vecInit
ext_matAddPart
abs_vecAddPart

}

Convergence test: After the radiative transfer calculations with a fixed scattering integral
field are complete the newly obtained radiation field is compared to the old radiation field by
a convergence test. The functions and parameters for the convergence test are defined in the
agenda doit conv test agenda. There are several options. The workspace methods
doit conv flagAbsBT and doit conv flagAbs compare the absolute differences
of the radiation field element-wise as described in Equation (13.19). The convergence limits
are specified by the generic input epsilon which specifies the convergence limit. A limit
must be given for each Stokes component. In doit conv flagAbsBT the limits must
be specified in Rayleigh Jeans brightness temperatures whereas in doit conv flagAbs
they must be defined in the basic radiance unit ([W/(m2Hz sr)]. Another option is to perform
a least square convergence test using the workspace method doit conv flagLsq. Test
calculations have shown that this test is not safe, therefore the least square convergence test
should only be used for test purposes.

AgendaSet(doit_conv_test_agenda) {
doit_conv_flagAbsBT(doit_conv_flag, doit_iteration_counter,

doit_i_field, doit_i_field_old,
f_grid, f_index,
[0.1, 0.01, 0.01, 0.01])

Alternative: Give limits in radiances
doit_conv_flagAbs(doit_conv_flag, doit_iteration_counter,
doit_i_field, doit_i_field_old,
[0.1e-15, 0.1e-18, 0.1e-18, 0.1e-18])

124 SCATTERING - DOIT MODULE

#
If you want to look at several iteration fields, for example
to investigate the convergence behavior, you can use
the following workspace method:
DoitWriteIterationFields(doit_iteration_counter, doit_i_field,
[2, 4])

}

13.4.3 Propagation of the DOIT result towards the sensor

In order to propagate the result of the scattering calculation towards the sensor, the fields
needs to be interpolated on the direction of the sensor’s line of sight. This is done in the
workspace method iyInterpCloudboxField, which has to be put into the agenda
iy cloudbox agenda:

AgendaSet(iy_cloudbox_agenda){
iyInterpCloudboxField

}

13.4.4 3D DOIT calculations

The DOIT method is implemented for 1D and 3D spherical atmospheres, but it is strongly
recommended to use it only for 1D calculations, because there are several numerical diffi-
culties related to the grid discretizations. It is difficult to find appropriate discretizations to
get sufficiently accurate results in reasonable computation time. Therefore only experienced
ARTS users should use DOIT for 3D calculations only for smaller cloud scenarios. Please
refer to the online documentation for the workspace method for 3D scattering calculations
(doit i fieldUpdateSeq3D). All other workspace methods adapt automatically to the
atmospheric dimensionality.

Chapter 14

Reversed Monte Carlo Scattering
Module : ARTS-MC

14.1 Introduction

Much of the following has been taken from an article submitted to IEEE TGARS [Davis
et al., 2004], although here there is a more detailed description of how the algorithm is
implemented in ARTS, and how to use it.

Discrete ordinates (DOM) type methods are attractive when simulating the whole radi-
ation field, but in the limb sounding - and other remote sensing cases, only a very limited
subset of outward propagation paths are required. Also, for limb sounding simulations
there is a strong variation in incoming radiance with zenith angles close to 90◦. In DOM
type models, this necessitates a very fine angular grid, which can be expensive.

A reversed Monte Carlo method was chosen for this study. A strong consideration here
was that the simplicity of the Monte Carlo radiative transfer concept should translate to
reduced development time. Also, reversed Monte Carlo methods allow all computational
effort to be concentrated on calculating radiances for the desired line of sight, and the nature
of Monte Carlo algorithms makes parallel computing trivial.

Among the available Backward Monte Carlo RT models, several do not allow a thermal
source, or do not consider polarization fully (i.e. allowing a non-diagonal extinction matrix)
(e.g. Liu et al. [1996]), and some consider neither (e.g. Oikarinen et al. [1999], Ishimoto
and Masuda [2002]).

A useful reference for model development in this study, is the Backward-Forward Monte
Carlo (BFMC) model described by Liu et al. [1996]. In BMFC photon paths are traced back-
wards from the sensor, with scattering angles and path lengths randomly chosen from prob-
ability density functions (PDF) determined by the scattering phase function, and a scalar
extinction coefficient respectively. The phase matrices for every scattering event and scalar
extinction are then sequentially applied to the source Stokes vector to give the Stokes vector
contribution for each photon. As presented in Liu et al. [1996], the model is only applicable
to cases where the extinction matrix is diagonal - that is, where there is macroscopically

History
300504 Created and written by Cory Davis.

126 REVERSED MONTE CARLO SCATTERING MODULE : ARTS-MC

isotropic and mirror-symmetric scattering media. This prompted Roberti and Kummerow
Roberti and Kummerow [1999] to abandon the Backward-Forward Monte Carlo method
and choose a modified Forward Monte Carlo model. However, in this study the attractive
features of Liu’s Backward-Forward model are retained by utilizing importance sampling, a
well known technique in Monte Carlo integration. Importance sampling allows independent
variables, in this case scattering angles and path lengths, to be sampled from any distribution
as long as each contribution to the final integral is properly weighted.

14.2 Model

The radiative transfer model solves the vector radiative transfer equation (VRTE):

dI(n)
ds

= −K(n)I(n) + Ka(n)Ib(T) +∫
4π

Z(n,n′)I(n′)dn′ (14.1)

where I is the 4 element column vector of radiances I = [I,Q, U, V]T with units
(Wm−2µm−1sr−1). This will be referred to as the Stokes vector, although normally the
Stokes vector is expressed in units of intensity. s is distance along direction n and Ib is
the Planck radiance. K(n), Ka(n), and Z(n,n′) are the bulk extinction matrix, absorption
coefficient vector and phase matrix of the medium respectively. For brevity these have been
expressed as bulk optical properties, where individual single scattering properties have been
multiplied by particle number density and averaged over all orientations and particle types.
The argument n has been retained to signify that in general these properties depend on the
direction of propagation.

To apply Monte Carlo integration to the problem, the VRTE needs to be expressed in
integral form. (e.g. Hochstadt [1964])

I(n, s0) = O(u0, s0)I(n,u0)+∫ s0
u0

O(s′, s0) (Ka(n)Ib(T) +
∫

4π Z(n,n′)I(n′)dn′) ds′

(14.2)

, where O(s′, s) is the evolution operator defined by Degl’Innocenti and Degl’Innocenti
[1985]. u0 is the point where the line of sight intersects the far boundary of the scattering
domain, and s0 is the exit point where the outgoing Stokes vector is calculated. In general
there is no closed form expression for O(s′, s). However, in cases where the extinction
matrix is constant along a propagation path

O(s′, s) = exp (−K∆s) (14.3)

In ARTS a propagation path consists of a set of coordinates indicating where the path in-
tersects with grid surfaces. If the extinction matrix in the path segment between two such
points is considered constant, K = (Kj + Kj+1)/2, the evolution operator between two
arbitrary points s0 and sN is

O(s0, sN) = O(sN−1, sN)O(sN−2, sN−1) . . .
O(s1, s2)O(s0, s1), (14.4)

14.2 MODEL 127

, where O(si, si+1) is given by Eq. 14.3.
The numerical task is then to perform Monte Carlo integration on the integral on the

right hand side of Eq. 14.2. The aim in importance sampling is to choose probability den-
sity functions (PDFs) for the independent variables that are as close as possible to being
proportional to the integrand Liu [2001]. This concentrates computational effort on regions
where the integrand is most significant and also reduces the variance in the contributions
of each photon, thus reducing the number of photons and hence CPU time required to give
a prescribed accuracy. Eq. 14.2 suggests that the PDF for sampling path length, where
path length is the distance traced backwards from the sensor, ∆s = |s− s′|, should be
proportional in some way to the evolution operator O(s′, s). Likewise, new incident direc-
tions (θinc, φinc) should be sampled from a PDF proportional to Z(θscat, φscat, θinc, φinc).
Since PDFs are scalar functions, and that we consider the first element of the Stokes vector
most important, we choose PDFs that are proportional to the (1,1) element of O(s′, s) and
Z(θscat, φscat, θinc, φinc).

14.2.1 Algorithm

The model algorithm proceeds as follows:

1. Begin at the cloud box exit point with a new photon. Sample a path length, ∆s along
the first line of sight using the PDF

g0(∆s) =
k̃Õ11(∆s)

1−O11(u0, s0)
. (14.5)

, where Õ11(∆s), is the piecewise exponential function that includesO11(s′, s) values
at points where the line of sight intersects with grid surfaces. Between two such
adjacent intersections, A and B, the function Õ11(∆s) is given by

Õ11(∆s) = O11(∆sA) exp
(
−k̃ (∆s−∆sA)

)
(14.6)

, and

k̃ =
1

(∆sB −∆sA)
ln

(
OA11

OB11

)
(14.7)

, which, for cases where the extinction matrix is diagonal, is equal to K11 = (KA
11 +

KB
11)/2. The denominator in Eq. 14.5 ensures an emission or scattering event for

each photon in the initial line of sight. Eq. 14.5 is sampled by taking a random
number (from the uniform distribution [0,1]), r, and solving

1− Õ11(∆s)
1−O11(u0, s0)

= r. (14.8)

for ∆s.

128 REVERSED MONTE CARLO SCATTERING MODULE : ARTS-MC

2. Another random number, r, is drawn to choose between emission and scattering. We
first define an albedo-like quantity

ω̃ = 1− Ka1(n0, s1)
K11(n0, s1)

(14.9)

Note: we can’t use the actual single-scattering albedo as this depends on the polar-
ization state of the incident radiation. If r > ω̃, then the event is considered to be
emission, the reversed ray tracing is terminated, and the Stokes vector contribution of
the ith photon is

Ii(n, s0) =
O(s1, s0)Ka(n0, s1)Ib(T, si)

g0(∆s) (1− ω̃)
(14.10)

, where the index i signifies photon number. Return to step 1.

Otherwise, if r ≤ ω̃ we have a scattering event.

3. At the scattering point sample a new incident direction (θinc, φinc) according to

g(θinc, φinc) =
Z11(θscat, φscat, θinc, φinc) sin(θinc)
K11(θscat, φscat)−Ka1(θscat, φscat)

(14.11)

, which is sampled by the rejection method as described in Liu [2001].

Calculate the matrix

Qk = Qk−1qk (14.12)

, where

qk =
sin(θinc)kO(sk, sk−1)Z(nk−1,nk)

g (∆s) g(θinc, φinc)ω̃
, (14.13)

and Q0 = 1. The index k represents the scattering order.

4. Choose a path length along the new direction according to

g(∆s) = k̃Õ11(∆s) (14.14)

This is sampled by taking a random number and solving

Õ11(∆s) = r. (14.15)

for ∆s. If r < O11(uk, sk), where uk is the boundary of the scattering domain in the
current line of sight, the photon leaves the scattering domain, and the contribution for
photon i is

Ii(n, s0) =
QkO(uk, sk)I(nk,uk)

O11(uk, sk)
(14.16)

, where I(nk,uk) is the incoming radiance at uk. This is calculated with the standard
ARTS clear-sky routine. Return to step 1.

Otherwise, if the sampled path length keeps the path within the scattering domain...

14.3 IMPLEMENTATION IN ARTS: SCATTERINGMONTECARLO 129

5. As in step 2, calculate ω̃ at the new point, sk+1, and draw a uniform random deviate,
r.

If r > ω̃, then the event is considered to be emission, the reversed ray tracing is
terminated, the Stokes vector contribution is

Ii(n, s0) =
QkO(sk+1, sk)Ka(nk, sk+1)Ib(T, sk+1)

g (∆s) (1− ω̃)
(14.17)

, and we return to step 1.

Otherwise, if r ≤ ω̃ we have a scattering event and we return to step 3.

6. Once the prescribed number, N , of photon contributions, Ii(n, s0), have been calcu-
lated, the cloud box exit Stokes vector is given by

I(n, s0) = O(u0, s0)I(n,u0) + 〈Ii(n, s0)〉. (14.18)

, with an estimated error for each Stokes index, j, of

δIj =

√
〈I2
j 〉 − 〈Ij〉2
N

. (14.19)

When simulating an MLS measurement, an extra clear sky RT calculation is performed
from the cloud box exit to the sensor, with the Monte Carlo result from Eq. 14.18 taken as
the radiative background.

14.3 Implementation in ARTS: ScatteringMonteCarlo

14.4 Future Plans

130 REVERSED MONTE CARLO SCATTERING MODULE : ARTS-MC

S
C
A
T

T
E
R
IN

G
sa

m
pl

e
a

ne
w

in
ci

de
nt

di
re

ct
io

n
(θ

in
c
,φ

in
c
)

ac
-

co
rd

in
g

to

g
(θ

in
c
,φ

in
c
)
=

Z
1
1
(θ

sc
a
t,

φ
sc

a
t,

θ i
n
c
,φ

in
c
)
si
n
(θ

in
c
)

K
1
1
(θ

sc
a
t,

φ
sc

a
t)
−

K
a
1
(θ

sc
a
t,

φ
sc

a
t)

C
al

cu
la

te
th

e
m

at
ri
x

Q
k

=
Q

k
−1

q
k

,
w

he
re

q
k

=
si
n
(θ

in
c
) k

O
(s

k
,s

k
−1

)Z
(n

k
−1

,n
k
)

g
(∆

s)
g
(θ

in
c
,φ

in
c
)ω̃

,

an
d

Q
0

=

�

.

B
eg

in
at

th
e

cl
ou

d
b
ox

ex
it

p
oi

nt
w

it
h

a
ne

w
ph

ot
on

.
S
am

pl
e

a
pa

th
le

ng
th

,
∆

s
al

on
g

th
e

fi
rs

t
lin

e
of

si
gh

t
us

in
g

th
e

P
D

F

g 0
(∆

s)
=

k̃
Õ

1
1
(∆

s)

1
−

O
1
1
(u

0
,s

0
).

S
T
A
R
T

i
=

N
?

C
L
O

U
D

E
X
IT

S
T

O
K

E
S

V
E
C
T

O
R

I(
n
,s

0
)

=
O

(u
0
,s

0
)I

(n
,u

0
)
+
〈Ii

(n
,s

0
)〉.

U
se

th
is

as
th

e
ra

di
at

iv
e

ba
ck

gr
ou

nd
fo

r
fi
na

l
cl

ou
d-

se
ns

or
cl

ea
r

sk
y

R
T

.

F
IN

IS
H

E
M

IS
S
IO

N

Ii
(n

,s
0
)

=
Q

k
O

(s
k
+

1
,s

k
)K

a
(n

k
,s

k
+

1
)I

b
(T

,s
k
+

1
)

g
(∆

s)
(1

−
ω̃

)

B
O

U
N

D
A
R
Y

Ii
(n

,s
0
)

=
Q

k
O

(u
k
,s

k
)I

(n
k
,u

k
)

O
1
1
(u

k
,s

k
)

E
M

IS
S
IO

N

Ii
(n

,s
0
)

=
O

(s
1
,s

0
)K

a
(n

0
,s

1
)I

b
(T

,s
i)

g 0
(∆

s)
(1

−
ω̃

)

S
am

pl
e

a
ne

w
pa

th
le

ng
th

,
∆

s
al

on
g

th
e

ne
w

di
re

ct
io

n
us

in
g

th
e

P
D

F

g
(∆

s)
=

k̃
Õ

1
1
(∆

s)

O
U

T
S
ID

E
?

r
>

ω̃
?

r
>

ω̃
?

N
O

N
O

N
O

Y
E
S

Y
E
S

Y
E
S

Y
E
S

i
=

1

k
=

0

N
O

i
=

i
+

1

k
=

k
+

1

Figure 14.1: Flowchart illustrating ScatteringMonteCarlo algorithm

Part III

Implementation Issues

Chapter 15

The art of developing ARTS

The aim of this section is to describe how the program is organized and to give detailed
instructions how to make extensions. That means, it is addressed to the ARTS developers,
not the users. If you only want to use ARTS, you should not need to read it. But if you
want to make changes or additions, you should definitely read this carefully, since it
can safe you a lot of work to understand how things are organized.

15.1 Organization

ARTS is written in C++ with the help of the GNU development tools (Autoconf, Automake,
etc.). It is organized in a similar manner as most GNU packages. The top-level ARTS
directory is either called arts or arts-x.y, where x.y is the release number. It contains
various sub-directories, notably doc for documentation, src for the C++ source code,
ami for the MATLAB interface, and aii for the IDL interface. The document that you are
reading right now, the ARTS User Guide, is located in doc/uguide.

There are two different versions of the ARTS package: The developers version and
the end-user version. Both contain the complete source code, the only difference is that
the developers version also includes the CVS housekeeping data. If you want to join in the
ARTS development (which we of course encourage you to do), you should write an email to
the authors to obtain access to the developers version, which makes it easier to merge your
changes with the ‘official’ ARTS program. Furthermore, for serious development work
you need a computer running Unix, the GNU development tools, LaTeX, and the Doxygen
program. All this is freely and easily available on the Internet, and, what is more, all these
tools are included in the standard linux distributions like Suse and Redhat.

The end-user version contains everything that you need in order to compile and in-
stall ARTS in a fairly automatic manner. The only thing you should need is an ANSI-

History
020425 Stefan Buehler: Put this part back in the AUG. Updated.
011005 Stefan Buehler: Fixed TeX warnings, updated.
000728 Stefan Buehler: Added stuff about build system and howto cut a release.
000615 Created by Stefan Buehler. For now, this is basically the former content

of the file notes.txt.

134 THE ART OF DEVELOPING ARTS

C++ compiler and the standard Unix make utility. Please see files arts/README and
arts/INSTALL for installation instructions. We are developing with the GNU C++ com-
piler, no other compilers have been tried so far.

15.2 The ARTS build system

As mentioned above, GNU tools are used to construct the ARTS build system. A good
introduction to the GNU build system can be found in:

http://www.amath.washington.edu/ lf/tutorials/autoconf/

Using these tools makes a lot of things very easy, but also some things slightly more com-
plicated.

The most important thing to keep in mind is that an ARTS release is not just a copy
of the ARTS development tree. Instead there is a special make target ‘dist’ that you can
use to cut a release. How this is done in detail is described in Section 15.5.4. Mostly, the
GNU tools are smart enough to figure out automatically what should go into the release.
However, this can be controlled by editing the Makefile.am files which can be found in
almost all directories.

The support for documentation other than info and man pages is not very good in the
GNU system, so we had to use some tricks to make sure that the Doxygen automatic docu-
mentation and the User Guide work as they should.

15.2.1 Configure options

Here are some interesting options for configure/autogen.sh:

--disable-debug: Removes ’-g’ from the compiler flags and includes #define
NDEBUG 1 in config.h. The central switch to turn off all debugging features (in-
dex range checking for vectors, the trace facility, assertions,...). In maintainer mode,
debugging is enabled by default.

--disable-maintainer-mode: Disables certain developer-centric features such as
generating the user guide and the doxygen html documentation. The maintainer mode
is enabled by default when using autogen.sh to configure arts.

--disable-more-warnings: Compile without -Werror. More warnings are en-
abled by default in maintainer mode except for compilers which are known to throw
warnings.

--disable-optimize: Disable optimizations. Certain variables or functions might
not be visible to the debugger when optimizations are enabled. The compiler can de-
cide to not allocate memory for certain variables or inline whole functions for speed.
This can lead to strange behaviour while debugging the program. Note: If you use
the Intel C++ Compiler, disabling optimizations also turns off OpenMP parallization.

--disable-vectorize: Disables the generation of multi-threaded code. Configure
tries to detect if the compiler supports OpenMP and enables it by default.

15.3 CONVENTIONS 135

15.2.2 Adding directories or files

If you add directories or just files, you have to make sure that they also go into the distribu-
tion. In some cases (e.g., program source code files) this is done automatically. But if you
add any other kind of file, for example a data or a documentation file, you have to edit the
Makefile.am file in that directory to make sure that your stuff goes into the distribution.
It is a good idea to always check the release in order to see if the things you added are really
there.

15.3 Conventions

Here are some general rules for ARTS programming:

15.3.1 Numeric types

Never use float or double explicitly, use the type Numeric instead. This is set by
configure (to double by default). In the same way, use Index for all integers. It can
take on positive or negative values and defaults to long. To change the default types, run
configure with the options --with-index-type or --with-numeric-type:

./configure --with-index-type=int --with-numeric-type=float

Note that changing the numeric type to a lower precision type than double might have
unforseen impacts on the numerical precision and could lead to wrong results. In a similar
way, reducing the index type can make it impossible to handle larger Vectors, Matrices
or Tensors. The maximum range of the index type determines the maximum number of
elements the container types can handle.

15.3.2 Container types

Use Vector and Matrix for mathematical vectors and matrices (with elements of type
Numeric). Use Array<something> to create an array of somethings. Com-
monly used Arrays have been predefined, they have names like ArrayOfString,
ArrayOfMatrix, and so forth.

15.3.3 Terminology

Calculations are carried out in the so called workspace (WS), on workspace variables
(WSVs). A WSV is for example the variable containing the absorption coefficients. The
WSVs are manipulated by workspace methods (WSMs). The WSMs to use are specified in
the controlfile in the same order in which they will be executed.

15.3.4 Global variables

Are not visible by default. To use them you have to declare them like this:

extern const Numeric PI;

136 THE ART OF DEVELOPING ARTS

which will make the global constant PI=3.14... available. Other important globals are:

full name Full name of the program, including version.
parameters All command line parameters.
basename Used to construct output file names.
out path Output path.
messages Controls the verbosity level.
wsv data WSV lookup data.
wsv group names Lookup table for the names of types of WSVs.
WsvMap The map associated with wsv data.
md data WSM lookup data.
MdMap The map associated with md data.
workspace The workspace itself.
species data Lookup information for spectroscopic species.
SpeciesMap The map associated with species data.

The only exception from this rule are the output streams out0 to out3, which are visible
by default.

15.3.5 Files

Always use the open output file and open input file functions to open files.
This switches on exceptions, so that any error occurring later on with this file will result
in an exception. (Currently not really implemented in the GNU compiler, but please use it
anyway.)

15.3.6 Version numbers

The package version number is set in file configure.in in the top level ARTS directory.
Always increase this when you do a CVS commit, even for small changes. in such cases
increase the last digit by one. If you make a new distribution, increase the middle digit by
one and omit the last digit. If you make a bug-fix distribution, you can add the last digit to
indicate this.

15.3.7 Header files

The global header file arts.h must be included by every file. Apart from that you have to
see yourself what header files you need. If you use functions from the C or C++ standard
library, you have to also include the appropriate header file.

15.3.8 Documentation

Doxygen is used to generate automatic source code documentation. See

http://www.stack.nl/ dimitri/doxygen/

for information. There is a complete User manual there. At the moment we only generate
the output as HTML, although latex, man-page, and rtf format is also possible. The HTML

15.3 CONVENTIONS 137

version is particularly useful for source code browsing, since it includes the complete source
code! You should add Doxygen headers to the following:

1. Files

2. Classes (Including all private and public members)

3. Functions

4. Global Variables

The documentation headers are comment blocks that look like the examples below.
They should be put above the definition of a function, i.e., in the .cc file. Some functions
are defined in the .h file (e.g., inline member functions). In that case the comment can be
put in the .h file.

There is an Emacs package (Doxymacs) that makes the insertion of documentation
headers particularly easy. You can find documentation of this on the Doxymacs webpage:
http://doxymacs.sourceforge.net/. To use it for ARTS (provided you have it),
put the following in your Emacs initialization file:

(require ’doxymacs)

(setq doxymacs-doxygen-style "Qt")

(defun my-doxymacs-font-lock-hook ()
(if (or (eq major-mode ’c-mode) (eq major-mode ’c++-mode))

(progn
(doxymacs-font-lock)
(doxymacs-mode))))

(add-hook ’font-lock-mode-hook ’my-doxymacs-font-lock-hook)

(setq doxymacs-doxygen-root "../doc/doxygen/html/")
(setq doxymacs-doxygen-tags "../doc/doxygen/arts.tag")

The only really important lines are the first two, where the second line is the one se-
lecting the style of documentation. The next block just turns on syntax highlighting for the
Doxygen headers, which looks nice. The last two lines are needed if you want to use the
tag lookup features (see Doxymacs documentation if you want to find out what this is). The
package allows you to automatically insert headers. The standard key-bindings are:

C-c d ? look up documentation for the symbol under the point.
C-c d r rescan your Doxygen tags file.
C-c d f insert a Doxygen comment for the next function.
C-c d i insert a Doxygen comment for the current file.
C-c d ; insert a Doxygen comment for a member variable on the

current line (like M-;).
C-c d m insert a blank multi-line Doxygen comment.
C-c d s insert a blank single-line Doxygen comment.
C-c d @ insert grouping comments around the current region.

138 THE ART OF DEVELOPING ARTS

You can call the macros also by name, e.g., doxymacs-insert-file-comment.

File comment

Generated by doxymacs-insert-file-comment.

/*!
\file dummy.cc
\author Stefan Buehler <sbuehler (at) irv.se>
\date Thu Apr 25 15:58:50 2002

\brief A dummy file.

This file has no purpose at all,
it just servers as an example...

*/

Function comment

Generated by doxymacs-insert-function-comment. If arguments are modified
by the function you should add ‘Output:’ after the
param command, just like for the parameter a in the example below. If a parameter is
both input and output, you should say ‘Output and Input:’. The documentation for each
parameter should start with a capital letter and end with a period, like in the example below.

Author and date tags are not inserted by default, since they would be overkill if you
have many small functions. However, you should include them for important functions.

//! A dummy function.
/*!
This function has no purpose at all,
it just serves as an example...

\param a Output: This parameter is modified by the
function.

\param b This is the other parameter.
\return Dummy value computed from a and b.

*/
int dummy(int& a, int b);

Generic multi-line comment

Generated by doxymacs-insert-blank-multiline-comment.

//! A dummy comment.
/*!
Some more elaborate description about this variable,
class, or whatever.

*/

15.4 EXTENDING ARTS 139

Generic single-line comment

Generated by doxymacs-insert-blank-singleline-comment.

//! Short comment here.

15.4 Extending ARTS

15.4.1 How to add a workspace variable

You should read Sectionsec:agendas:wsvs to understand what workspace variables are.
Here is just the practical description how a new variable can be added.

1. Create a record entry in file workspace.cc. (Just add another one of the
wsv data.push back blocks.) Take the already existing entries as templates. The
ARTS concept works best if WSVs are only of a rather limited number of different
types, so that generic WSMs can be used extensively, for example for IO.

The name must be exactly like you use it in the source code, because this is used to
generate interface functions.

Make sure that the documentation string you give explains the variable and its purpose
well. In particular, state the dimensions (in the case of matrices) and the units!
This string is used for the online documentation. Please take some time to write it
carefully. Use the template at the beginning of function define wsv data() in
file workspace.cc as a guideline.

2. That’s it!

15.4.2 How to add a workspace variable group

You should read Sectionsec:agendas:wsvs to understand what workspace variable groups
are. Here is just the practical description how a new group can be added.

1. Add a wsv group names.push back("your type") function to the function
define wsv group names() in groups.cc. The name must be exactly like
you use it in the source code, because this is used to generate interface functions.

2. XML reading/writing routines are mandatory for each workspace variable group.
Two steps are necessary to add xml support for the new group:

(a) Implement an xml read from stream and xml write to stream
function. Depending on the type of the group the implementa-
tion goes into one of the three files xml io basic types.cc,
xml io compound types.cc, or xml io array types.cc. Ba-
sic types are for example Index or Numeric. Compound types are structures
and classes. And array types are arrays of basic or compound types. Also add
the function declaration in the corresponding .h file.

(b) Add an explicit instantiation for xml read from file<GROUP> and
xml write to file<GROUP> to xml io instantiation.h.

140 THE ART OF DEVELOPING ARTS

3. If your new group does not implement the output operator (operator<<), you
have to add an explicit implementation of the Print function in m general.h
and m general.cc.

4. That’s it! (But as stated above, use this feature wisely)

15.4.3 How to add a workspace method

You should read Sectionsec:agendas:wsms to understand what workspace methods are.
Here is just the practical description how a new method can be added.

1. Create an entry in the function define md data in file methods.cc. (Make a
copy of an existing entry (one of the md data.push back(...) blocks) and edit
it to fit your new method.) Don’t forget the documentation string! Please refer to the
example at the beginning of the file to see how to format it.

2. Run: make.

3. Look in auto md.h. There is a new function prototype

void <YourNewMethod>(...)

4. Add your function to one of the .cc files which contain method functions. Such files
must have names starting with m . (See separate HowTo if you want to create a new
source file.) The header of your function must be compatible with the prototype in
auto md.h.

5. Check that everything looks nice by running

arts -d YourNewMethod

If necessary, change the documentation string.

6. Thats it!

15.4.4 How to add a source code file

1. Create your file. Names of files containing workspace methods should start with m .

2. You have to register your file in the file src/Makefile.am. This file states which
source files are needed for arts. Should be self-explanatory where you have to add
your file. The above goes for source (.cc) and header (.h) files likewise.

3. Then go to the top level arts directory and run: autogen.sh.

4. Go to src and run: cvs add <my file> to make your file known to CVS.

15.5 SVN ISSUES 141

15.4.5 How to add a test case

1. Create a new subdirectory in tests/. If your test is closely related to another test
case you can skip this step and instead add it to one of the existing subdirectories.

2. Create your own test controlfile. The filename should start with
Test followed by the name of the subdirectory it is located in, e.g.
tests/DOIT/TestDOIT.arts. If the subdirectory contains more than
one test controlfile append a short descriptive text to the end of the filename like
tests/MonteCarlo/TestMonteCarloGaussian.arts.

3. Copy all required input files into the subdirectory.

4. Add the necessary checks for your testcase to tests/testall.py.

5. In tests/Makefile.am add the name of your test to the variable check and the
subdirectory to the variable TESTDIRS.

15.5 SVN issues

The arts project is controlled by Subversion. This section describes some basic SVN com-
mands. For more information see the extensive SVN documentation:

http://svnbook.red-bean.com/

15.5.1 How to check out arts

1. Go to a temporary directory.

2. Run: svn co https://www.sat.ltu.se/svn/rt/arts/trunk arts

15.5.2 How to update (if you already have a copy)

1. Go to the top ARTS directory (called simply arts).

2. Run: svn update

IMPORTANT! Always update, before you start to make changes to the program,
especially after a longer pause. If you edit an outdated copy, it will be a lot more
work to bring your changes into the current copy of the program.

15.5.3 How to commit your changes

1. You should make sure that the program compiles and runs without obvious errors
before you commit.

2. If you have created a new source file, make it known to SVN by running the command
svn add <my file> in the directory where the file resides.

In general, when you run svn update, it will warn you about any files it doesn’t
know by marking them with a ?. Files that are created during the compilation process,

http://svnbook.red-bean.com/

142 THE ART OF DEVELOPING ARTS

but should not be part of the package are ignored by SVN. You can view the list of
ignored files for the current directory with svn propget svn:ignore .. The
list can be edited with svn propedit svn:ignore ..

3. Have you added the documentation for your new features?

4. Increase the subversion number in file configure.in in the top level ARTS direc-
tory.

5. Open the file ChangeLog in the top level ARTS directory with your favorite editor.

With Emacs, you can very easily add an entry by typing either

M-x add-change-log-entry

or C-x 4 a.

Specify the new version number and describe your changes.

These keystrokes work also while you are editing some other file in Emacs. Thus
it is best to write your ChangeLog entry already while you work on a file. When-
ever you make a change to a file, there should be a ChangeLog Entry!

6. Make sure that you have saved all your files. Go to the top level ARTS directory and
run: svn commit.

7. This will pop up an editor. Use the mouse to cut and paste the Change-Log message
also to this editor window. Safe the file and exit the editor. If you made changes
in different directories, another editor will pop up, already containing your message.
Save again and exit. Do this until no more editors come up. (Note: This works well
if you set

export EDITOR=xedit

in your shell startup file.

With smart editors there can be problems, because they might refuse to safe your file
if you haven’t made changes to it. With xedit you just have to push the save button
twice to override.

8. Tell the other developers about it. The best way to do this is to send an email to
arts-dev@www.sat.ltu.se.

15.5.4 How to cut a release

1. Change the release number in the file configure.in in the top-level ARTS direc-
tory. (The line that you have to change is the one with AM INIT AUTOMAKE.) Omit
the subversion number (last digit).

2. Commit your changes (see other howto).

3. In the top-level ARTS directory, run autogen.sh.

15.6 DEBUGGING (USE OF ASSERT) 143

4. In the top-level ARTS directory, run make distcheck. This will not only cut the
release, but also immediately try to build it, to see if it works. Unless you are on a
very fast machine, this may take a while. Maybe you should go and have a cup of
coffee.

5. If all goes well, you can find the release inside the top-level ARTS directory as a file
arts-x.y.tar.gz, where x.y is the release number.

6. Check the release carefully by trying to build and install the program.

15.5.5 How to move your arts working directory

In general it is no problem to move your working directory. The only thing to consider is
that the autotools write hardwired paths into the generated Makefiles. Therefore you have
to run autogen.sh working directory.

15.6 Debugging (use of assert)

This section draws heavily on the GNU tools manual of Eleftherios Gkioulekas:

http://www.amath.washington.edu/˜lf/tutorials/autoconf/

The idea behind assert is simple. Suppose that at a certain point in your code, you expect
two variables to be equal. If this expectation is a precondition that must be satisfied in order
for the subsequent code to execute correctly, you must assert it with a statement like this:

assert(var1 == var2);

In general assert takes as argument a boolean expression. If the boolean expression is
true, execution continues. Otherwise the abort system call is invoked and the program
execution is stopped. If a bug prevents the precondition from being true, then you can
trace the bug at the point where the precondition breaks down instead of further down in
execution or not at all. The assert call is implemented as a C preprocessor macro, so it
can be enabled or disabled at will.

In ARTS, you don’t have to do this manually, as long as your source file in-
cludes arts.h either directly or indirectly. Instead, assertions are turned on and off
with the global NDEBUG preprocessor macro, which is set or unset automatically by
the configure script. The relevant configure options are --enable-debug
and --disable-debug. Assertions are also turned on automatically by the
--enable-maintainer-mode option. (And this again is set automatically if you run
the autogen.sh script.)

If your program is stopped by an assertion failure, then the first thing you should do is
to find out where the error happens. To do this, run the program under the GDB debugger.
First invoke the debugger:

gdb arts

You have to give the full path to the ARTS executable. Then set a breakpoint at the assertion
failure:

http://www.amath.washington.edu/~lf/tutorials/autoconf/

144 THE ART OF DEVELOPING ARTS

(gdb) break assert fail

(Note the two leading underscores!) Now run the program:

(gdb) run

Instead of just exiting, under the debugger the program will be paused when the asser-
tion fails, and you will get back the debugger prompt. Now type:

(gdb) where

to see where the assertion failure happened. You can use the print command to look at
the contents of variables and you can use the up and down commands to navigate the stack.
For more information, see the GDB documentation or type help at the prompt of GDB.

For ARTS, the assertion failures mostly happen inside the Tensor / Matrix / Vector
package (usually because you triggered a range check error, i.e., you tried to read or write
beyond array bounds). In this case the up command of GDB is particularly useful. If you
give this a couple of times you will finally end up in the part of your code that caused the
error.

Recommendation: In Emacs there is a special GDB mode. With this you can very
conveniently step through your code.

Chapter 16

The workspace

FIXME: This is a construction site. Please don’t read!
This chapter deals with the main components of ARTS: Workspace variables (WSVs)

and workspace methods (WSMs). Furthermore, it explains the use of agendas, a special
group of WSVs.

16.1 Implementation files

The two most important files are:

• workspace.cc:
Definition and documentation of WSVs.

• methods.cc:
Definition and documentation of WSMs. The implementations of WSMs reside in
files named m something.cc.

• agendas.cc:
Definition and documentation of agendas.

It is very likely that you will have to edit these. Less likely, but possibly, you also have to
edit:

• groups.cc:
Definition of WSV groups.

When ARTS is built, a number of source code files are generated automatically. They
are listed here in the order in which they are generated:

• auto wsv groups.h:
Generated from groups.cc.

History
020605 Created by Stefan Buehler.

146 THE WORKSPACE

• auto wsv.h, auto wsv pointers.cc:
Generated from auto wsv groups.h and workspace.cc.

• auto md.h, auto md.cc:
Generated from auto wsv groups.h, auto wsv.h, agendas.cc, and
methods.cc.

This is achieved by a set of simple C++ programs:

• make auto wsv groups h.cc

• make auto wsv h.cc

• make auto wsv pointers cc.cc

• make auto md h.cc

• make auto md cc.cc

The meaning of the names should be self-explanatory. There is one program for each file
to be generated. The generation of the auto files happens automatically when you do a
make. Therefore, never edit any of these files.

Next, there are some files that contain the internal implementation of WSVs and WSMs.
These are:

• wsv aux.h, wsv aux.cc, workspace aux.cc:
Implementation of class WsvRecord, which stores the lookup information for one
WSV, plus auxiliary stuff for the workspace.

• methods.h, methods aux.cc:
Implementation of class MdRecord, which stores the lookup information for one
WSM.

Finally, there are some files that contain the internal implementation of agendas. These
are:

• agenda class.h, agenda class.cc:
Implementation of class MRecord, which stores runtime information for one WSM,
and class Agenda, which stores an agenda.

• agenda record.h, agenda record.cc:
Implementation of class AgRecord, which is used to store agenda lookup informa-
tion.

As mentioned above, you will not have to modify any of the implementation files, they
are listed here just for reference. Normally, you only have to modify workspace.cc,
methods.cc, and agendas.cc.

16.2 WORKSPACE VARIABLES OR WSVS 147

16.2 Workspace Variables or WSVs

All important variables in ARTS are WSVs. This means that they can be manipulated by a
list of WSMs, which is specified in the ARTS controlfile. There exists a predefined list of
possible WSVs. This list defines the workspace. One can think of each WSV as a ‘slot’ in
the workspace: The WSV can be either set, or unset. Set means that the WSV has a well-
defined content, unset means that it has no well-defined content. At the start of an ARTS
job all WSVs are unset.

WSVs are defined in the file workspace.cc. A typical definition looks like this:

wsv_data.push_back
(WsvRecord
(NAME("f_grid"),

DESCRIPTION
(
"The frequency grid for monochromatic pencil beam\n"
"calculations.\n"
"\n"
"Usage: Set by the user.\n"
"\n"
"Unit: Hz"
),
GROUP("Vector")));

All WSV definitions have the same three elements:

1. The name, exactly the same name has to be used in the code.

2. The description, which is normally much longer than in the example here. It must
fully describe the WSV, its purpose, and its normal usage. See file workspace.cc
for instructions how to write the documentation.

3. The group to which the WSV belongs. You can think of a group as something sim-
ilar to a C++ data type. The WSV in the example belongs to the group Vector.
The allowed groups are defined in file groups.cc. Note that you have to add an
underscore to the group name.

See Section 15.4 for explicit instructions how to add a new WSV to ARTS.

16.3 Workspace Methods or WSMs

WSMs manipulate WSVs to produce other WSVs. There are three kinds of WSMs:

1. Specific WSMs.

2. Generic WSMs.

3. Agenda WSMs.

As in the case of WSVs, there is a central place in ARTS where information on the available
WSMs is stored. This place is the file methods.cc. It contains a record for each WSM.
Here is an example:

148 THE WORKSPACE

md_data.push_back
(MdRecord

(NAME("elsLorentz"),
DESCRIPTION
(
"The Lorentz lineshape.\n"
"\n"
"This computes the simple Lorentz lineshape as:\n"
"\n"
"els[i] = 1/PI * ls_gamma /\n"
" ((els_f_grid[i])ˆ2 + ls_gammaˆ2)\n"
"\n"
"Note that the frequency grid els_f_grid must hold\n"
"offset frequencies from line center. Hence, the\n"
"line center frequency is not needed as input.\n"
"\n"
"Output:\n"
" els : The lineshape function [1/Hz]\n"
"\n"
"Input:\n"
" ls_gamma : Line width [Hz].\n"
" els_f_grid : Frequency grid [Hz]."
),
OUT("els"),
GOUT(),
GOUT_TYPE(),
IN("ls_gamma", "els_f_grid"),
GIN(),
GIN_TYPE(),
GIN_DEFAULT(),

));

All WSM definitions have the same elements:

1. The NAME, exactly as in the code.

2. The DESCRIPTION. This must fully describe the WSM, its purpose, and its normal
usage. See file methods.cc for instructions how to write the documentation.

3. The OUT. This is a list of WSV names. All these WSVs are set by this WSM.

4. The GOUT. This is a list descriptive names for the generic outputs.

5. The GOUT TYPE. This is a list of WSV group names. This defines the group to
which output arguments must belong (see below).

6. The IN. This is a list of WSV names. All these WSVs are required as input by this
WSM. This means they must have been set before.

7. The GIN, a list of descriptive names for the generic inputs.

8. The GIN TYPE. This is a list of WSV group names This defines the group to which
input arguments must belong.

16.3 WORKSPACE METHODS OR WSMS 149

9. The GIN DEFAULT, a list of default values for the generic inputs. NODEF means that
the generic input has no default and the user has to set it in the control file.

16.3.1 Specific WSMs

For this type of WSM the output and input is fixed. Fields GIN and GOUT are empty. The ex-
ample above belongs in this category. It sets the WSV els, using the WSVs ls gamma and
els f grid as inputs. What the function actually does is to compute a Lorentzian line-
shape function with width ls gamma, for the frequencies given in the grid els f grid.
(The line center is at frequency 0.) The result is then stored in the output WSV els.

To call this method in the controlfile, you just have to write elsLorentz.

16.3.2 Generic WSMs

This class of WSM is more powerful, because it can be applied to any WSV that belongs to
the right group. A good example is:

md_data_raw.push_back
(MdRecord

(NAME("VectorSetConstant"),
DESCRIPTION
(
"Creates a workspace vector and sets all elements of the \n"
"vector to the specified value. The length of the vector is \n"
"determined by the variable *nelem*. \n"

),
AUTHORS("Patrick Eriksson"),
OUT(),
GOUT("vector"),
GOUT_TYPE("Vector"),
IN("nelem"),
GIN("value"),
GIN_TYPE("Numeric"),
GIN_DEFAULT(NODEF)

));

As you probably have guessed, this WSM resizes the output vector to have nelem elements
and sets all elements to the given value. You would use it as follows:

IndexSet(nelem, 10)
VectorCreate(myvector)
VectorSetConstant(myvector, nelem, 0)

This would create the WSV myvector and then fill it with 10 elements set to 1.
Note that output arguments always come first, input arguments last. Try arts -d
VectorSetConstant to get more information on this method. (See section 2.4 for
information on command line switches.)
For basic types it is allowed to pass values instead of variables directly to the WSM. In that
case, the above example would look like this:

VectorCreate(myvector)
VectorSetConstant(myvector, 10, 0)

150 THE WORKSPACE

16.3.3 Agenda WSMs

16.4 Agendas

16.4.1 Introduction

Agendas are a special incarnation of a WSM. At runtime an arbitrary number of WSMs
can be added to an agenda. On invocation, the agenda will execute its methods one after
the other. The inputs and outputs defined for the agenda must be satisfied by the invoked
WSMs. E.g., if an agenda has f grid in its list of output WSVs, a WSM which generates
f grid must be added to the agenda in the control file.

Agendas run their methods in a separate scope. Although WSMs invoked by an agenda
have full access to all workspace variables, only the WSVs defined as output of the agenda
will keep their values after the agenda execution. All other WSVs retain the values from
before the agenda run.

Even though it is possible to execute agenda directly from the control file with the
AgendaExecute method, the more common and intended use case is the internal invo-
cation by other WSMs. This adds a considerable amount of flexibility to arts. The RteStd
method for example calculates (besides other components) the emission term. Without the
means of an agenda, it would only be possible to use always the same method for the emis-
sion calculation. By the use of an agenda the user can choose between different methods to
calculate the emission and plug them into the emission agenda in the control file:

AgendaSet(emission_agenda){
emissionPlanck

}

Part IV

Mathematical functions

Chapter 17

Vectors, matrices, tensors, and arrays

This section describes how vectors and matrices are implemented in ARTS and how they
are used. Furthermore it describes how arrays of arbitrary type can be constructed and used.

17.1 Implementation files

The Matrix and Vector classes described below reside in the files:

• matpackI.h
• make vector.h

• matpackI.cc
• make vector.cc

Tensors of order 3 to 7 reside in the files:

• matpackIII.h
• matpackIV.h
• matpackV.h
• matpackVI.h
• matpackVII.h
The template class Array (also described below) is implemented in the files:

• array.h

History
030807 Sparse added by Mattias Ekström.
030109 Documentation for using jokers without Range added by Stefan Buehler.
020516 Tensors added by Stefan Buehler.
011018 Created and written by Stefan Buehler.

154 VECTORS, MATRICES, TENSORS, AND ARRAYS

• make array.h

The Sparse class is described in the file:

• matpackII.h
The file test matpack.cc contains test cases and usage examples. For Sparse there

is a separate test file, test sparse.cc.

17.2 Vectors

The class Vector implements the mathematical concept of a vector. (Surprise, surprise.)
This means that:

• A Vector contains a list of floating point values of type Numeric.

• A Vector can be multiplied with another Vector (scalar product), or with a Matrix.

• Sub-ranges of a Vector can easily be accessed, and used as if they were Vectors.

• Resizing a Vector is expensive and should be avoided.

17.2.1 Constructing a Vector

You can construct an object of class Vector in any of these ways:

Vector a; // Create empty Vector.
Vector b(3); // Create Vector of length 3, if

// created like this it will contain
// arbitrary values.

Vector c(3,0.0); // Create Vector of length 3, and
// fill it with 0.

Vector d=c; // Make d a copy of c.

Vector e(1,5,1); // 1, 2, 3, 4, 5
Vector f(1,5,.5); // 1, 1.5, 2, 2.5, 3
Vector g(5,5,-1); // 5, 4, 3, 2, 1

The last three examples all use the same constructor, which takes the three arguments
‘start’, ‘extent’, and ‘stride’. It will create a Vector containing ‘extent’ elements, starting
with ‘start’, with a step of ‘stride’.

There also exists a special sub-class of Vector that can be initialized explicitly. This
must be a special class in order to avoid ambiguities with the standard constructors. Usage:

MakeVector a(1.0,2.0,3.0); // Creates a vector of length 3
// containing the values
// 1.0, 2.0, and 3.0.

You can use MakeVectors just like Vectors, except that the constructors are different.
Otherwise you can mix them freely with Vectors.

17.2 VECTORS 155

17.2.2 VectorViews

An object of class VectorView is, like the name says, just another view on an existing
Vector. It does not have its own data. This has the important consequence that it cannot be
resized, since that would mess up the original Vector that the view is referring to. You can
create VectorViews from Vectors using the index operator ‘[]’, the class Range, and the
special joker object. Examples:

MakeVector x(1,2,3,4,5,6,7);
VectorView a = x; // Now a refers to the

// whole of x;
VectorView b = x[Range(joker)]; // Same effect.
VectorView c = x[Range(0,2)]; // Take 2 elements of x,

// starting at the
// beginning,
// in this case: 1,2.

VectorView d = x[Range(0,3,2)]; // In this case: 1,3,5.
VectorView e = x[Range(3,joker)]; // In this case: 4,5,6,7.

As you can see, most useful ways to create VectorViews involve the Range class. The
general constructor to this class takes three arguments, ‘start’, ‘extent’, and ‘stride’. This
means that you will select ‘extent’ elements from the Vector, starting with index ‘start’, with
a step-width of stride. Note that indices are 0-based, so 0 refers to the first element. The last
argument, ‘stride’, can be omitted, in that case the default of 1 is assumed. As a special case,
‘extent’==joker means ‘to the end’, and calling Range with only one argument joker
means ‘all elements’.

Usually, you will not have to use VectorView explicitly, because you can use expressions
like:

Vector a(1,5,1); // a = 1,2,3,4,5
Vector b = a[Range(1,3)]; // b = 2,3,4

However, VectorView and the related class ConstVectorView are extremely use-
ful as the argument types of functions operating on Vectors. You should define your func-
tions like this:

void silly_function(VectorView a, // Output argument
ConstVectorView b // Input argument

// (read only)
)

{
// Do some silly stuff with a and b.

}

Note that there must not be any ‘&’ after VectorView or ConstVectorView. In other
words they have to be passed by value, not by reference. This is ok, since they do not contain
the actual data, so that passing by value is efficient. Passing VectorViews by reference is
forbidden.

156 VECTORS, MATRICES, TENSORS, AND ARRAYS

You should use these kind of arguments for all input Vectors, and also for the output if
you have a function that does not resize the output Vector. This has the great advantage that
you can call the function with Vector sub-ranges, e.g.,

Vector a(1,5,1); // a = 1,2,3,4,5
Vector b(3); // Set size of b.
silly_function(b,a[Range(0,3)]); // Call fuction with

// sub-range of a.

An exception to this rule are workspace methods, which use conventional argument
types const Vector& for input and Vector& for output.

17.2.3 What you can do with a Vector (or VectorView)

All examples below (except for the first) assume that a is a Vector, MakeVector, or Vec-
torView.

Resize (only for Vector, not for VectorView!):

a.resize(5);

This makes a a 5 element vector. The new Vector is not initialized (i.e., the contents will be
unpredictable). Also, note that the previous content will be completely lost. Appending to
a Vector is not possible.

Get the number of elements:

cout << a.nelem();

Sum up all elements:

cout << a.sum();

Element access:

cout << a[3]; // Print 4th element.
a[0] = 3.5; // Assign 3.5 to first element.

Note that we use 0-based indexing! Furthermore note that the operator ‘[]’ can be also
used with Range, as explained above.

Copying Vectors:

Vector b;
b = a;

In this case the size of b will be adjusted to that of a automatically. Maybe you have noticed
that there is a way to formulate the example above in even shorter fashion:

17.2 VECTORS 157

Vector b = a;

The result is exactly the same. Note, though, that in this case b is constructed from a, not
copied (see section about constructing Vectors above).

Copying in connection with views:

This one is a bit tricky. Obviously, the size of views can not be adjusted, because a view
is just some selection of the underlying object. The ‘=’ operator in this case copies the
contents, so the sizes of the left-hand and right-hand argument must match. VectorView
internally uses assertions to make sure of this. So, if you get an assertion failure one reason
could be that you forgot to make the target the correct size. Here is an example:

b[Range(5,5,-1)] = a[Range(3,5)]; // Copy 5 elements from
// a to b, reversing
// the order and starting
// with index 3 in a.

Great, isn’t it?

Assigning a scalar:

a = 1.0; // Assign 1 to all elements.

Mathematical operators:

Vector a(1,3,1), b(3,1); // a = 1,2,3; b = 1,1,1
a *= 2; // a = 2,4,6

// Similarly, /=, +=, -=
a += b; // a = 3,5,7

// Similarly, -=, *=, /=
a += a; // a = 6,10,14

// So a can appear on both sides.

All these operate element-wise. Note, that there are no return versions of these operators
(i.e., expressions like b = a+1 are not possible). This is again for efficiency reasons. It
is currently an active area of research in programming techniques how to make this kind of
expression efficient. None of the available solutions works, so ARTS has to live without it.

Maximum and minimum:

cout << max(a);
cout << min(a);

Scalar product:

cout << a*a;

This is an exception to the rule not to have return versions of operators. The reason is
quite obvious: The return value is only a scalar.

158 VECTORS, MATRICES, TENSORS, AND ARRAYS

Arbitrary single-argument math functions:

Vector b(a.nelem());
transform(b,sin,a); // b = sin(a)
transform(b,cos,b); // b = sin(b)

// So b can appear on both sides.

The transform function operates on each element of a with the function you specify and
puts the result in b. Note that the order of the arguments is swapped compared to the old
function trans that we had in the pre-Matpack era.

17.3 Matrices

The class Matrix implements the mathematical concept of a matrix. (Who would have
guessed this?) This means that:

• A Matrix contains floating point values of type Numeric.

• The values are arranged in rows and columns and can be accessed by indices. The
first index is the row, the second the column. In other words, we use row-major order,
similar to C, Matlab, and most math textbooks. Note, however, that some languages
like FORTRAN and IDL use column-major order.

• A Matrix can be multiplied with a Vector, or with another Matrix.

• A sub-range of a Matrix in both dimensions (submatrix) can easily be accessed, and
used as if it was just a normal matrix.

• Resizing a Matrix is expensive and should be avoided.

17.3.1 Constructing a Matrix

You can construct an object of class Matrix in any of these ways:

Matrix a; // Create empty Matrix.
Matrix b(3,4); // Create Matrix with 3 rows

// and 4 columns. When
// created like this it will contain
// arbitrary values.

Matrix c(3,4,0.0); // Similar, but
// fill it with 0.

Matrix d=c; // Make d a copy of c.

That is all. More fancy constructors, like for Vector, do not exist for Matrix. There is
also no equivalent to the MakeVector class.

17.3 MATRICES 159

17.3.2 MatrixViews

A MatrixView is a view on an existing Matrix, in the same way as a VectorView is a
view on an existing Vector. Like a VectorView, a MatrixView cannot be resized and does
not contain the actual data. A view is generated by using Ranges:

Matrix x(10,20); // Create 10x20 matrix.
MatrixView a = x; // Now a refers to the

// whole of x;
MatrixView b = x(Range(joker),Range(joker));

// Same effect.
MatrixView c = x[Range(0,2),Range(0,2)];

// 2x2 sub-matrix.

You probably get the idea. Note that the second argument of Range gives the number of
elements to take, not the index of the last element. See the section about Vectors for more
examples how to use Range. You can use joker, and also the third argument of Range to
select only every nth row, or column, or reverse the order of the rows or columns.

In analogy to the Vector case, you should use the two classes MatrixView and
ConstMatrixView as function arguments. Please refer to the discussion in the Vec-
tor section for details. As in the case of VectorViews, all arguments of these types should be
passed by value, not by reference. Also, similar to the Vector case, workspace methods are
the exception, because they have to use the conventional const Matrix& or Matrix&
as input/output arguments.

17.3.3 What you can do with a Matrix (or MatrixView)

All examples below (except for the first) assume that a is a Matrix or MatrixView.

Resize (only for Matrix, not for MatrixView!):

a.resize(5,10);

This makes a a 5x10 Matrix (5 rows, 10 columns). The new Matrix is not initialized (i.e.,
the contents will be unpredictable). Also, note that the previous content will be completely
lost.

Get the number of rows or columns:

cout << a.nrows();
cout << a.ncols();

Refer to a row or column:

Vector x = a(0,Range(joker)); // First row.
Vector y = a(Range(joker),a.ncols()-1); // Last column.

160 VECTORS, MATRICES, TENSORS, AND ARRAYS

Of course, you can use more complicated Range expressions to refer to only parts of a
row or column. However, the case that you want all elements of a given dimension is so
much more common than the more sophisticated uses of the Range class, that it is worth to
introduce a simplified notation for this case. Therefore, you are allowed to omit the Range
and just write:

Vector x = a(0,joker); // First row.
Vector y = a(joker,a.ncols()-1); // Last column.

Technically, expressions of this kind return the type VectorView. This means, they
can be used in all cases where an object of that type is expected, for example with the
function defined in Section 17.2.2:

silly_function(a(0,Range(joker)),
a(1,Range(joker))); // Call silly_function

// with first and
// second row of a.

Element access:

cout << a(3,4); // Print that element.
a(0,0) = 3.5; // Assign 3.5 to the top-left element

Note that we use 0-based indexing! Furthermore note that the operator ‘()’ can be also
used with one or two Range arguments, as explained above. To summarize:

• (Index,Index) returns Numeric (element access).

• (Index,Range) or (Range,Index) returns VectorView (row or column access).

• (Range,Range) returns MatrixView (sub-matrix access).

You may find it unlogical, that Matrix uses ‘()’ for indexing, whereas Vector uses ‘[]’.
However, using ‘[]’ for Matrix is not possible, since it can have only one argument. On the
other hand, using ‘()’ for Vector element access seemed not a good idea, since that would
break with the established use of ‘[]’ for element access in C and C++.

Copying Matrices:

Matrix b;
b = a;

As in the case of Vectors, the ‘=’ operator adjusts the size of the target automatically.

17.3 MATRICES 161

Copying in connection with views:

As in the case of Vectors, the ‘=’ operator copies only the contents for views, so the dimen-
sions must match. An attempt to justify this behavior has been made above in the Section
about Vector. As for Vector, you can use ‘=’ with complicated expressions. Here is a more
elaborate example:

b(Range(0,3),Range(0,4)) =
a(Range(10,3),Range(3,4,-1)); // Copy a row 10-12,

// column 0-3
// to b row 0-2,
// column 0-3, reversing
// the order of columns.

Note that in this case the dimensions must match exactly, as explained in the Section about
Vector.

If you do not understand the use of Range here, refer to Section 17.2.2.

Assigning a scalar:

a = 1.0; // Assign 1 to all elements.

Mathematical operators:

You can use the operators ‘+=’, ‘-=’, ‘*=’, and ‘/=’, which operate element-vise, just as for
Vector.

Maximum and minimum:

cout << max(a);
cout << min(a);

Arbitrary single-argument math functions:

The function transform works just like for Vector.

Transpose:

Matrix b = transpose(a); // Make b the transpose of a.

The function transpose creates a MatrixView, for which rows and columns are in-
terchanged. Note, that only the way the data is accessed is changed, not the data itself. So
Matrix a in the example above is not changed. For this reason, transposing is very efficient.
You can use transpose(a) instead of a in any matrix expression practically without
additional cost. (This is not strictly true, after all, the view has to be generated and passed.
But that cost should be negligible except for very small matrices.)

162 VECTORS, MATRICES, TENSORS, AND ARRAYS

Matrix multiplication:

// Matrix-Vector:
Vector b(a.nrows()), c(a.ncols());
mult(b,a,c); // b = a * c

// Matrix-Matrix:
Matrix d(a.nrows(),5), e(a.ncols(),5);
mult(d,a,e); // d = a * e

Note, that the result is put in the first argument, consistent with the general ARTS policy,
but different from the old MTL based multiplication function. Furthermore note, that as you
can see from the first example, a Vector is always considered to be a 1-column Matrix.

Important: The matrices or vectors that you give for the three arguments must not
overlap, or you will get garbage. In particular, this means that

mult(x,y,x); // x = y * x FORBIDDEN!!!

does not work. No, even worse: It works, but it gives the wrong result. The reason for this
behavior is that the result is constructed in the first argument variable. If that is also an input
variable it will change while it is multiplied, which will lead to a different result. There is
no efficient way to detect overlap, so the only way to allow input and output arguments to
be identical would be to use another internal dummy variable to store the result. However,
this would be much less efficient.

Another thing: You can use transpose, of course. These two examples should obviously
give the same result:

// Define b and c as in first example above.
mult(c,transpose(a),b); // c = a’ * b

// Vector-Matrix:
mult(transpose(c),transpose(b),a); // c’ = b’ * a

17.4 Tensors

ARTS has tensors with rank 3 to 7. They are called Tensor3, Tensor4, Tensor5,
Tensor6, Tensor7, and work very much like matrices, just with more dimensions. Some
properties:

• A Tensor contains floating point values of type Numeric.

• The rank of a tensor means the number of dimensions, so a Tensor4 has 4 dimen-
sions. Tensors of different rank are different classes. That means, the rank is fixed at
compile time and cannot be changed at runtime. We will use rank and dimension as
synonyms.

• The different dimensions are named:

– Library

17.4 TENSORS 163

– Vitrine

– Shelf

– Book

– Page

– Row

– Column

For example, Tensor3 b(2,4,3) defines a third order tensor with 2 pages, 4
rows, and 3 columns. Note that the column dimension is always last. (Incidentally, a
Matrix behaves exactly like a second order tensor, except that it has some additional
features.)

• A sub-range of a tensor in all dimensions (sub tensor) can easily be accessed, and
used as if it was just a normal tensor.

• More importantly, you can easily access lower dimensional ‘slices’ of a tensor.

• Resizing a tensor is expensive and should be avoided.

17.4.1 Constructing a tensor

You can construct an object of a tensor class like this:

Tensor7 a; // Create empty tensor of rank 7
Tensor3 b(2,4,3); // 2 pages, 4 rows, 3 columns
Tensor3 c(2,4,3,0.0); // Similar, but

// fill it with 0.

Tensor3 d=c; // Make d a copy of c.

17.4.2 Tensor views

Tensor views work exactly like matrix and vector views. Example:

Tensor4 a(10,20,5,4);
Tensor3View b = a(3,Range(1,3),joker,joker);

If you have read the previous sections carefully, it should be clear what this expression does.
This is what is meant by slicing: You can easily create a view of a tensor that picks out an

object of lower dimension. Note that you can use either an Index or a Range argument1

for any of the dimensions. The dimensionality of the result will adjust accordingly, as in the
example above.

Everything that was said about matrix and vector views holds also here. In particular,
please always use views as function arguments.

1Using just joker is equivalent to using Range(joker), as explained in Section 17.3.

164 VECTORS, MATRICES, TENSORS, AND ARRAYS

17.4.3 What you can do with a tensor (or tensor view)

All examples below (except for the first) assume that a is a Tensor7 or Tensor7View.

Resize (only for tensors, not for views):

a.resize(5, 10, 4, 5, 3, 6, 8);

This makes a the requested size. The new tensor is not initialized (i.e., the contents will be
unpredictable). Also, note that the previous content will be completely lost.

Get the extent of the various dimensions:

Index nl = a.nlibraries();
Index nv = a.nvitrines();
Index ns = a.nshelves();
Index nb = a.nbooks();
Index np = a.npages();
Index nr = a.nrows();
Index nc = a.ncols();

Which of these functions are available depends on the dimension of your tensor. For
example, nlibraries() is only available for Tensor7. Note, that I took care that the
first letters of the dimension names are unique, which is very convenient if you prefer short
names for your variables that refer so some dimension of a tensor.

Slicing:

Vector x = a(0,2,1,8,3,4,joker);
// Select row 4
// on page 3
// in book 8
// on shelf 1
// in vitrine 2
// in library 0
// and copy it to the Vector x.

Any Range or Index expression is allowed in any of the arguments, of course.

Element access:

cout << a(3,4,0,0,0,0,0); // Print that element.
a(0,0,0,0,0,0,0) = 3.5; // Assign 3.5 to this element.

Copying tensors:

Works exactly like copying matrices. Size of output argument is adjusted for Tensors, but
must already have the correct size for TensorViews.

17.4 TENSORS 165

Assigning a scalar:

a = 1.0; // Assign 1 to all elements.

Mathematical operators:

You can use the operators ‘+=’, ‘-=’, ‘*/’, and ‘/=’, which operate element-vise, just as for
Vector.

Maximum and minimum:

cout << max(a);
cout << min(a);

Arbitrary single-argument math functions:

The function transform works just like for Vector.

17.4.4 Making things appear larger than they are

Assume that you have written a function that performs some calculation for a Tensor5:

void my_function(Tensor5View x);

Can you call this function with a Tensor4? Yes, you can:

Tensor4 a;
Tensor5View b = a; // The extent of the first

// dimension of b will be 1.
my_function(b); // Call the function.

In general, you can always create a view that is one dimension bigger than what you
have. The leading dimension then has extent 1. There is one important exception: If you in-
terpret a Vector as a Matrix, the trailing dimension will be 1, not the leading dimension.
This is necessary, because the vector has to act like a column vector, so that matrix-vector
products work in the normal way. Of course you can use telescoping to blow up anything
to Tensor7:

Numeric b = 3.1415; // Just any number here.
Tensor7View bt7 =

Tensor6View(
Tensor5View(

Tensor4View(
Tensor3View(

MatrixView(
VectorView(b)

)
)

)
)

); // All dimensions of bt7 will be 1!

166 VECTORS, MATRICES, TENSORS, AND ARRAYS

This kind of conversion works also implicitly. So, instead of the first example, you
could have simply written:

my_function(a);

The purpose of this feature is to avoid having to make special versions of auxiliary
functions for all different tensor dimensions. Use it wisely! There is very little runtime
overhead for this, since the data itself is not copied.

17.4.5 Summary

This is all. In particular, we have no tensor products, since they are not needed. So, tensors
are mostly used to store things, notably atmospheric field and so on. There is a set of
sophisticated interpolation routines, though, which are described separately in Chapter 18.

17.5 Arrays

The template class Array can be used to make arrays out of anything. I do not know a
good definition for ‘array’, but I guess anybody who has written a computer program in
any programming language is familiar with the concept. Of course, it is rather similar to
the concept of a Vector, just missing all the mathematical functionality like Matrix-Vector
multiplication and sub-range access.

The implementation of our Array class is based on the STL class std::vector,
whereas the implementation of our Vector class is done from scratch. So the two im-
plementations are completely independent. Nevertheless, I tried to make Array behave
consistently with Vector, as much as possible. There are a number of important differ-
ences, though, hopefully sufficiently explained in this part. A short summary of important
differences:

• An Array can contain elements of any type, whereas a Vector always contains ele-
ments of type Numeric.

• No mathematical functionality for Array (no sub-ranges (nothing like VectorView);
no +=, -=, *=, /=; no scalar product; no transform function; no mult function; no
transpose function).

• On the other hand, resizing (for example adding to the end) of an Array is ok. (See
the push back method below.) It is still rather expensive, though, at least for large
Arrays.

17.5.1 Constructing an Array

You can construct an object of an Array class like this:

Array<Index> a; // Empty Array of class Index.

Array<String> b(5); // String Array with 5
// elements. Without initialization,

17.5 ARRAYS 167

// elements contain random values.
Array<String> c(5,"x"); // The same, but fill with "x".

Array<Index> d=a; // Make d a copy of a;

There are already a lot of predefined Array classes. The naming convention for them
is: ArrayOfIndex, ArrayOfString, etc.. Normally you should use these predefined
classes. But if you want to define an Array of some uncommon type, you can do it with
‘<>’, as in the above examples.

As for Vector, there is a special sub-class of Array that can be initialized explicitly.
Usage:

MakeArray<String> a("ARTS",
"is",
"great"); // Creates an array of String

// with these 3 elements.

17.5.2 What you can do with an Array

All examples below assume that a is an ArrayOfString.

Resize:

a.resize(5);

This adjusts the size of a to 5. Resizing is more efficiently implemented than for Vector,
but still expensive.

Get the number of elements:

cout << a.nelem(); // Just as for Vector.

In particular, note that the return type of this method is Index, just as for Vector. This
is an extension compared to std::vector, which just has a method size() that returns the
positive integer type size t.

Element access:

cout << a[3]; // Print 4th element.
a[0] = "Hello"; // Assign string "Hello" to first element.

In other words, this works just like for Vector.

Copying Arrays:

This works also the same as for Vector. The size of the target must match! In this respect,
I have modified the behavior with respect to the underlying std::vector, which has different
copy semantics.

168 VECTORS, MATRICES, TENSORS, AND ARRAYS

Assigning a scalar of the base type:

a = "Hello"; // Assign string "Hello" to all elements.

Append to the end:

a.push_back("Hello"); // Adds this new element at the
// end of a.

This can be an expensive operation, especially for large Arrays. Therefore, use it with
care. Actually, the push back method comes from the std::vector class that Array
is based on. You can do a lot more with std::vector, all of which also works with
Array. However, to explain the Standard Template Library is beyond the scope of this
text. You can read about it in C++ or even dedicated STL textbooks.

17.6 Sparse matrices

The class Sparse implements the mathematical concept of a matrix, same as Matrix does,
but the data is stored in a different manner. Sparse offers a memory saving storage when
most of the matrix is filled with zeros. This means that:

• A Sparse contains floating point values of type Numeric.

• The values are arranged in rows and columns in the same ways as for ordinary matri-
ces, in row-major order.

• A Sparse can be multiplied with a Vector, a Matrix or with another Sparse.

• There exist no views for Sparse.

• Resizing a Sparse is expensive and should be avoided.

To calculate the maximum number of non-zero elements for efficient storage, take the
product of number of columns and number of rows, subtract the number of columns plus
one and then divide by two, (nnz ≤ 0.5× (ncols× nrows− (ncols+ 1)).

17.6.1 Constructing a Sparse

You can construct an object of class Sparse in any of these ways:

Sparse a; // Create empty Sparse.
Sparse b(3,4); // Create Sparse with 3 rows

// and 4 columns. When
// created like this it will
// contain only zeros, i.e.
// be an empty Sparse.

Sparse d=c; // Make d a copy of c.

That is all. As for Matrix there exist no more fancy constructors, like an equivalent to
the MakeVector class.

17.6 SPARSE MATRICES 169

17.6.2 What you can do with a Sparse

All examples below assume that a is a Sparse.

Identity matrix:

a.make_I(10,10);

This sets a to be the identity matrix of size 10x10 (10 rows and 10 columns). Using this
function is much faster than setting the diagonal elements to one by yourself. The number
of rows and columns doesn’t have to match each other. In the case that they don’t, the rule
that each row and column only will have only one position occupied by a one is applied.
That is, in the case there are more rows than columns, the last rows will be empty.

Resize:

a.resize(5,10);

This makes a a 5x10 Sparse (5 rows, 10 columns). Note that the previous content will be
completely lost. The new Sparse will be empty.

Get the number of rows, columns or non-zero elements:

cout << a.nrows();
cout << a.ncols();
cout << a.nnz();

Element access:

There are two different ways to access individual elements. One used for read only and
one for read and write. The distinction is necessary since the read and write method creates
elements if they don’t already exist. Note that we use 0-based indexing. For reading only
use:

cout << a.ro(3,4); // Print that element. If it
// it doen’t exist a zero will
// be printed.

cout << a(0,0); // Short version of the above.

For reading and writing, such as assigning values to elements, use:

a.rw(0,0) = 1.5; // Assigns the value 1.5 to the
// first row and first column.

cout << a.rw(0,0); // Also returns the value of the
// first row and first column,
// if the element doesn’t exist
// it will be created and set
// to zero.

170 VECTORS, MATRICES, TENSORS, AND ARRAYS

Copying Matrices:

Sparse b;
b = a;

As in the case of Vectors, the ‘=’ operator adjusts the size of the target automatically.

Transpose:

The function transpose works a bit differently for Sparse than for Vector and Matrix.
This is due to the fact that we don’t have any views for Sparse. Thus, transpose for
a Sparse creates a new Sparse variable that contains the transpose of the original Sparse,
whereas transpose for a Matrix just creates a transposed view of the original Matrix.

The target variable for the transposed Sparse has to have the right dimensions before the
function is called.

Sparse b(a.ncols(),a.nrows());
transpose(b,a); // Make b the transpose of a.

// Note the argument order!

Matrix multiplication:

// Sparse-Vector
Vector b(a.nrows()), c(a.ncols());
mult(b,a,c); // b = a * c

// Sparse-Matrix
Matrix d(a.nrows(),5), e(a.ncols(),5);
mult(d,a,e); // d = a * e

// Sparse-Sparse
Sparse f(a.nrows(),5), g(a.ncols(),5);
mult(f,a,g); // f = a * g

The result is put in the first argument, consistent with the Matrix class. Note that for the
Sparse – Matrix multiplication the output is a Matrix. Important: As for Matrix, the
matrices or vectors that you give for the three arguments must not overlap, or you will
get garbage.

Chapter 18

Interpolation

There are no general single-step interpolation functions in ARTS. Instead, there is a set of
useful utility functions that can be used to achieve interpolation. Roughly, you can separate
these into functions determining grid position arrays, functions determining interpolation
weight tensors, and functions applying the interpolation. Doing an interpolation thus re-
quires a chain of function calls:

1. gridpos (one for each interpolation dimension)

2. interpweights

3. interp

Currently implemented in ARTS is mulitlinear interpolation in up to 6 dimensions. (Is the
6D case called hexa-linear interpolation?) The necessary functions and their interaction will
be explained in this chapter.

18.1 Implementation files

Variables and functions related to interpolation are defined in the files:

• interpolation.h
• interpolation.cc
• test interpolation.cc

The first two files contain the declarations and implementation, the last file some usage
examples.

History
020528 Created by Stefan Buehler.

172 INTERPOLATION

Green

Blue

Figure 18.1: The two different types of interpolation. Green (dotted): Interpolation to a new
grid, output has same dimension as input, in this case 2D. Blue (dashed): Interpolation to a
sequence of points, output is always 1D.

18.2 Green and blue interpolation

There are two different types of interpolation in ARTS:

Green Interpolation: Interpolation of a gridded field to a new grid.

Blue Interpolation: Interpolation of a gridded field to a sequence of positions.

Figure 18.1 illustrates the different types for a 2D example.
The first step of an interpolation always consists in determining where your new points

are, relative to the original grid. You can do this separately for each dimension. The posi-
tions have to be stored somehow, which is described in the next section.

18.3 Grid positions

A grid position specifies where an interpolation point is, relative to the original grid. It con-
sists of three parts, an Index giving the original grid index below the interpolation point,
a Numeric giving the fractional distance to the next original grid point, and a Numeric
giving 1 minus this number. Of course, the last element is redundant. However, it is efficient
to store this, since it is used many times over. We store the two numerics in a plain C array
of dimension 2. (No need to use a fancy Array or Vector for this, since the dimension is
fixed.) So the structure GridPos looks like:

struct GridPos {
Index idx; /*!< Original grid index below

interpolation point. */
Numeric fd[2]; /*!< Fractional distance to next point

(0<=fd[0]<=1), fd[1] = 1-fd[0]. */
};

For example, idx=3 and fd=0.5 means that this interpolation point is half-way between
index 3 and 4 of the original grid. Note, that ‘below’ in the first paragraph means ‘with a
lower index’. If the original grid is sorted in descending order, the value at the grid point

18.4 SETTING UP GRID POSITION ARRAYS 173

below the interpolation point will be numerically higher than the interpolation point. In
other words, grid positions and fractional distances are defined relative to the order of the
original grid. Examples:

old grid = 2 3
new grid = 2.25
idx = 0
fd[0] = 0.25

old grid = 3 2
new grid = 2.25
idx = 0
fd[0] = 0.75

Note that fd[0] is different in the second case, because the old grid is sorted in de-
scending order. Note also that idx is the same in both cases.

Grid positions for a whole new grid are stored in an Array<GridPos> (called
ArrayOfGridPos).

18.4 Setting up grid position arrays

There is only one function to set up grid position arrays, namely gridpos:

void gridpos(ArrayOfGridPos& gp,
ConstVectorView old_grid,
ConstVectorView new_grid);

Some points to remember:

• As usual, the output gp has to have the right dimension.

• The old grid has to be strictly sorted. It can be in ascending or descending order. But
there must not be any duplicate values. Furthermore, the old grid must contain at least
two points.

• The new grid does not have to be sorted, but the function will be faster if it is sorted
or mostly sorted. It is ok if the new grid contains only one point.

• The beauty is, that this is all it needs to do also interpolation in higher dimensions:
You just have to call gridpos for all the dimensions that you want to interpolate.

• Note also, that for this step you do not need the field itself at all!

18.5 Interpolation weights

As explained in the ‘Numerical Recipes’ [Press et al., 1997], 2D bi-linear interpolation
means, that the interpolated value is a weighted average of the original field at the four
corner points of the grid square in which the interpolation point is located. For simplicity,

174 INTERPOLATION

IP

1 2

34

t

u

Figure 18.2: The grid square for 2D interpolation. The numbers 1. . . 4 mark the corner
points, IP is the interpolation point, t and u are the fractional distances in the two dimen-
sions.

we label the four corner points counterclockwise, starting from the lower left point (Figure
18.2). Then the interpolated value is given by:

y(t, u) = (1− t) ∗ (1− u) ∗ y1

+ t ∗ (1− u) ∗ y2

+ t ∗ u ∗ y3

+ (1− t) ∗ u ∗ y4

= w1 ∗ y1 + w2 ∗ y2 + w3 ∗ y3 + w4 ∗ y4 (18.1)

where t and u are the fractional distances between the corner points in the two dimensions,
yi are the field values at the corner points, and wi are the interpolation weights.

(By the way, I have discovered that this is exactly the result that you get if you first
interpolate linearly in one dimension, then in the other. I was playing around with this a bit,
but it is the more efficient way to pre-calculate the wi and do all dimensions at once.

How many interpolation weights one needs for a multilinear interpolation depends on
the dimension of the interpolation: There are exactly 2n interpolation weights for an n
dimensional interpolation. These weights have have to be computed for each interpolation
point (each grid point of the new grid, if we do a ‘green’ type interpolation. Or each point
in the sequence, if we do a ‘blue’ type interpolation).

This means, calculating the interpolation weights is not exactly cheap, especially if one
interpolates simultaneously in many dimensions. On the other hand, one can save a lot by
re-using the weights. Therefore, interpolation weights in ARTS are stored in a tensor which
has one more dimension than the output field. The last dimension is for the weight, so this
last dimension has the extent 4 in the 2D case, 8 in the 3D case, and so on (always 2n).

In the case of a ‘blue’ type interpolation, the weights are always stored in a matrix, since
the output field is always 1D (a vector).

18.6 Setting up interpolation weight tensors

Interpolation weight tensors can be computed by a family of functions, which are all called
interpweights. Which function is actually used depends on the dimension of the input
and output quantities. For this step we still do not need the actual fields, just the grid
positions.

18.6 SETTING UP INTERPOLATION WEIGHT TENSORS 175

18.6.1 Blue interpolation

In this case the functions are:

void interpweights(MatrixView itw,
const ArrayOfGridPos& cgp);

void interpweights(MatrixView itw,
const ArrayOfGridPos& rgp,
const ArrayOfGridPos& cgp);

void interpweights(MatrixView itw,
const ArrayOfGridPos& pgp,
const ArrayOfGridPos& rgp,
const ArrayOfGridPos& cgp);

void interpweights(MatrixView itw,
const ArrayOfGridPos& vgp,
const ArrayOfGridPos& sgp,
const ArrayOfGridPos& bgp,
const ArrayOfGridPos& pgp,
const ArrayOfGridPos& rgp,
const ArrayOfGridPos& cgp);

In all cases, the dimension of itw must be consistent with the given grid position arrays
and the dimension of the interpolation (last dimension 2n). Because the grid position arrays
are interpreted as defining a sequence of positions they must all have the same length.

18.6.2 Green interpolation

In this case the functions are:

void interpweights(Tensor3View itw,
const ArrayOfGridPos& rgp,
const ArrayOfGridPos& cgp);

void interpweights(Tensor4View itw,
const ArrayOfGridPos& pgp,
const ArrayOfGridPos& rgp,
const ArrayOfGridPos& cgp);

void interpweights(Tensor5View itw,
const ArrayOfGridPos& bgp,
const ArrayOfGridPos& pgp,
const ArrayOfGridPos& rgp,
const ArrayOfGridPos& cgp);

void interpweights(Tensor6View itw,
const ArrayOfGridPos& sgp,
const ArrayOfGridPos& bgp,
const ArrayOfGridPos& pgp,
const ArrayOfGridPos& rgp,
const ArrayOfGridPos& cgp);

void interpweights(Tensor7View itw,
const ArrayOfGridPos& vgp,
const ArrayOfGridPos& sgp,
const ArrayOfGridPos& bgp,
const ArrayOfGridPos& pgp,

176 INTERPOLATION

const ArrayOfGridPos& rgp,
const ArrayOfGridPos& cgp);

In this case the grid position arrays are interpreted as defining the grids for the inter-
polated field, therefore they can have different lengths. Of course, itw must be consistent
with the length of all the grid position arrays, and with the dimension of the interpolation
(last dimension 2n).

18.7 The actual interpolation

For this final step we need the grid positions, the interpolation weights, and the actual fields.
For each interpolated value, the weights are applied to the appropriate original field values
and the sum is taken (see Equation 18.1). The interp family of functions performs this
step.

18.7.1 Blue interpolation
void interp(VectorView ia,

ConstMatrixView itw,
ConstVectorView a,
const ArrayOfGridPos& cgp);

void interp(VectorView ia,
ConstMatrixView itw,
ConstMatrixView a,
const ArrayOfGridPos& rgp,
const ArrayOfGridPos& cgp);

void interp(VectorView ia,
ConstMatrixView itw,
ConstTensor3View a,
const ArrayOfGridPos& pgp,
const ArrayOfGridPos& rgp,
const ArrayOfGridPos& cgp);

void interp(VectorView ia,
ConstMatrixView itw,
ConstTensor4View a,
const ArrayOfGridPos& bgp,
const ArrayOfGridPos& pgp,
const ArrayOfGridPos& rgp,
const ArrayOfGridPos& cgp);

void interp(VectorView ia,
ConstMatrixView itw,
ConstTensor5View a,
const ArrayOfGridPos& sgp,
const ArrayOfGridPos& bgp,
const ArrayOfGridPos& pgp,
const ArrayOfGridPos& rgp,
const ArrayOfGridPos& cgp);

void interp(VectorView ia,
ConstMatrixView itw,
ConstTensor6View a,

18.8 EXAMPLES 177

const ArrayOfGridPos& vgp,
const ArrayOfGridPos& sgp,
const ArrayOfGridPos& bgp,
const ArrayOfGridPos& pgp,
const ArrayOfGridPos& rgp,
const ArrayOfGridPos& cgp);

18.7.2 Green interpolation
void interp(MatrixView ia,

ConstTensor3View itw,
ConstMatrixView a,
const ArrayOfGridPos& rgp,
const ArrayOfGridPos& cgp);

void interp(Tensor3View ia,
ConstTensor4View itw,
ConstTensor3View a,
const ArrayOfGridPos& pgp,
const ArrayOfGridPos& rgp,
const ArrayOfGridPos& cgp);

void interp(Tensor4View ia,
ConstTensor5View itw,
ConstTensor4View a,
const ArrayOfGridPos& bgp,
const ArrayOfGridPos& pgp,
const ArrayOfGridPos& rgp,
const ArrayOfGridPos& cgp);

void interp(Tensor5View ia,
ConstTensor6View itw,
ConstTensor5View a,
const ArrayOfGridPos& sgp,
const ArrayOfGridPos& bgp,
const ArrayOfGridPos& pgp,
const ArrayOfGridPos& rgp,
const ArrayOfGridPos& cgp);

void interp(Tensor6View ia,
ConstTensor7View itw,
ConstTensor6View a,
const ArrayOfGridPos& vgp,
const ArrayOfGridPos& sgp,
const ArrayOfGridPos& bgp,
const ArrayOfGridPos& pgp,
const ArrayOfGridPos& rgp,
const ArrayOfGridPos& cgp);

18.8 Examples

18.8.1 A simple example

This example is contained in file test interpolation.cc.

178 INTERPOLATION

void test05()
{

cout << "Very simple interpolation case\n";

Vector og(1,5,+1); // 1, 2, 3, 4, 5
Vector ng(2,5,0.25); // 2.0, 2,25, 2.5, 2.75, 3.0

cout << "Original grid:\n" << og << "\n";
cout << "New grid:\n" << ng << "\n";

// To store the grid positions:
ArrayOfGridPos gp(ng.nelem());

gridpos(gp,og,ng);
cout << "Grid positions:\n" << gp;

// To store interpolation weights:
Matrix itw(gp.nelem(),2);
interpweights(itw,gp);

cout << "Interpolation weights:\n" << itw << "\n";

// Original field:
Vector of(og.nelem(),0);
of[2] = 10; // 0, 0, 10, 0, 0

cout << "Original field:\n" << of << "\n";

// Interpolated field:
Vector nf(ng.nelem());

interp(nf, itw, of, gp);

cout << "New field:\n" << nf << "\n";
}

Ok, maybe you think this is not so simple, but a large part of the code is either setting up
the example grids and fields, or output. And here is how the output looks like:

Very simple interpolation case
Original grid:

1 2 3 4 5
New grid:

2 2.25 2.5 2.75 3
Grid positions:

1 0 1
1 0.25 0.75
1 0.5 0.5
1 0.75 0.25
1 1 0

Interpolation weights:
1 0

18.8 EXAMPLES 179

0.75 0.25
0.5 0.5
0.25 0.75

0 1
Original field:

0 0 10 0 0
New field:

0 2.5 5 7.5 10

18.8.2 A more elaborate example

What if you want to interpolate only some dimensions of a tensor, while retaining others?
— You have to make a loop yourself, but it is very easy. Below is an explicit example for a
more complicated interpolation case. (Green type interpolation of all pages of a Tensor3.)
This example is also contained in file test interpolation.cc.

void test04()
{

cout << "Green type interpolation of all "
<< "pages of a Tensor3\n";

// The original Tensor is called a, the new one n.

// 10 pages, 20 rows, 30 columns, all grids are: 1,2,3
Vector a_pgrid(1,3,1), a_rgrid(1,3,1), a_cgrid(1,3,1);
Tensor3 a(a_pgrid.nelem(),

a_rgrid.nelem(),
a_cgrid.nelem());

a = 0;
// Put some simple numbers in the middle of each page:
a(0,1,1) = 10;
a(1,1,1) = 20;
a(2,1,1) = 30;

// New row and column grids:
// 1, 1.5, 2, 2.5, 3
Vector n_rgrid(1,5,.5), n_cgrid(1,5,.5);
Tensor3 n(a_pgrid.nelem(),

n_rgrid.nelem(),
n_cgrid.nelem());

// So, n has the same number of pages as a,
// but more rows and columns.

// Get the grid position arrays:
ArrayOfGridPos n_rgp(n_rgrid.nelem()); // For rows.
ArrayOfGridPos n_cgp(n_cgrid.nelem()); // For columns.

gridpos(n_rgp, a_rgrid, n_rgrid);
gridpos(n_cgp, a_cgrid, n_cgrid);

180 INTERPOLATION

// Get the interpolation weights:
Tensor3 itw(n_rgrid.nelem(), n_cgrid.nelem(), 4);
interpweights(itw, n_rgp, n_cgp);

// Do a "green" interpolation for all pages of a:

for (Index i=0; i<a.npages(); ++i)
{

// Select the current page of both a and n:
ConstMatrixView ap = a(i,

Range(joker), Range(joker));
MatrixView np = n(i,

Range(joker), Range(joker));

// Do the interpolation:
interp(np, itw, ap, n_rgp, n_cgp);

// Note that this is efficient, because interpolation
// weights and grid positions are re-used.

}

cout << "Original field:\n";
for (Index i=0; i<a.npages(); ++i)

cout << "page " << i << ":\n"
<< a(i,Range(joker),Range(joker)) << "\n";

cout << "Interpolated field:\n";
for (Index i=0; i<n.npages(); ++i)

cout << "page " << i << ":\n"
<< n(i,Range(joker),Range(joker)) << "\n";

}

The output is:

Green type interpolation of all pages of a Tensor3
Original field:
page 0:

0 0 0
0 10 0
0 0 0

page 1:
0 0 0
0 20 0
0 0 0

page 2:
0 0 0
0 30 0
0 0 0

Interpolated field:
page 0:

0 0 0 0 0
0 2.5 5 2.5 0

18.9 HIGHER ORDER INTERPOLATION 181

0 5 10 5 0
0 2.5 5 2.5 0
0 0 0 0 0

page 1:
0 0 0 0 0
0 5 10 5 0
0 10 20 10 0
0 5 10 5 0
0 0 0 0 0

page 2:
0 0 0 0 0
0 7.5 15 7.5 0
0 15 30 15 0
0 7.5 15 7.5 0
0 0 0 0 0

18.9 Higher order interpolation

Everything that was written so far in this chapter referred to linear interpolation, which uses
2 neighboring data points in the 1D case. But ARTS has also a framework for higher order
polynomial interpolation. It is defined in the two files

• interpolation poly.h

• interpolation poly.cc

We define interpolation order O as the order of the polynomial that is used. Linear
interpolation, the ARTS standard case, corresponds toO = 1. O = 2 is quadratic interpola-
tion, O = 3 cubic interpolation. The number of interpolation points (and weights) for a 1D
interpolation is O + 1 for each point in the new grid. So, linear interpolation uses 2 points,
quadratic 3, and cubic 4.

Note, that if you use even interpolation orders, you will have an unequal number of
interpolation points ‘to the left’ and ‘to the right’ of your new point. This is an argument
for preferring O = 3 as the basic higher order polynomial interpolation, instead of O = 2.

Overall, higher order interpolation works rather similarly to the linear case. The main
difference is that grid positions for higher order interpolation are stored in an object of type
GridPosPoly, instead of GridPos. A GridPosPoly object contains grid indices and
interpolation weights for all interpolation points. For each point in the new grid, there are
O + 1 indices and O + 1 weights.

The reason why we store all interpolation point indices, and not only the index of the
first point, is to allow correct handling of circular interpolation, for example in scattering
phase function φ angle. If the angle goes from 0 to 360◦, then points just below 360 should
be used in interpolations to points just above 0, so the indices to use are not contiguous in
memory. Functions to handle this are not yet implemented, but this should be a relatively
simple matter.

In contrast to GridPos, GridPosPoly stores weights w rather than fractional dis-
tances fd. For the linear case:

182 INTERPOLATION

w[0] = fd[1]
w[1] = fd[0]

So the two concepts are almost the same. Because the w are associated with each
interpolation point, they work also for higher interpolation order, whereas the concept of
fractional distance does not.

The weights are calculated according to section 3.1, eq. 3.1.1 of [Press et al., 1997].
These are for the 1D case. For 2D and higher dimensional cases, the weights of the individ-
ual dimensions have to be multiplied, just as in the linear interpolation case.

Instead of gridpos, you have to use the function gridpos poly for higher order
interpolation. It works exactly like gridpos, but has an additional argument that gives the
interpolation order O.

After setting up the GridPosPoly object with gridpos poly, you have to call
interpweights and interp, exactly as in the linear case. (The actual functions used
are not the same, since the name is overloaded. The interpweights and interp
functions for use with GridPosPoly are implemented in interpolation poly.cc.)
So, a complete interpolation chain involves:

gridpos_poly
interpweights
interp

For O = 1 the result of the interpolation chain will be the same as for the lin-
ear interpolation routines. Below is a simple complete example, taken from the file
test interpolation.cc in the arts source directory:

void test08()
{

cout << "Very simple interpolation case for the "
<< "new higher order polynomials.\n";

Vector og(1,5,+1); // 1, 2, 3, 4, 5
Vector ng(2,5,0.25); // 2.0, 2,25, 2.5, 2.75, 3.0

cout << "Original grid:\n" << og << "\n";
cout << "New grid:\n" << ng << "\n";

// To store the grid positions:
ArrayOfGridPosPoly gp(ng.nelem());

Index order=2; // Interpolation order.

gridpos_poly(gp,og,ng,order);
cout << "Grid positions:\n" << gp;

// To store interpolation weights:
Matrix itw(gp.nelem(),order+1);

18.10 SUMMARY 183

interpweights(itw,gp);

cout << "Interpolation weights:\n" << itw << "\n";

// Original field:
Vector of(og.nelem(),0);
of[2] = 10; // 0, 0, 10, 0, 0

cout << "Original field:\n" << of << "\n";

// Interpolated field:
Vector nf(ng.nelem());

interp(nf, itw, of, gp);

cout << "New field (order=" << order << "):\n" << nf << "\n";

cout << "All orders systematically:\n";
for (order=1; order<5; ++order)
{

gridpos_poly(gp,og,ng,order);
itw.resize(gp.nelem(),order+1);
interpweights(itw,gp);
interp(nf, itw, of, gp);

cout << "order " << order << ": ";
for (Index i=0; i<nf.nelem(); ++i)

cout << setw(8) << nf[i] << " ";
cout << "\n";

}
}

18.10 Summary

Now you probably understand better what was written at the very beginning of this chapter,
namely that doing an interpolation always requires the chain of function calls:

1. gridpos or gridpos poly (one for each interpolation dimension)

2. interpweights

3. interp

If you are interested in how the functions really work, look in file interpolation.cc
or interpolation poly.cc. The documentation there is quite detailed. When you
are using interpolation, you should always give some thought to whether you can re-use
grid positions or even interpolation weights. This can really save you a lot of computation

184 INTERPOLATION

time. For example, if you want to interpolate several fields — which are all on the same
grids — to some position, you only have to compute the weights once.

Chapter 19

Integration functions

A radiative transfer model which takes into account the effect of scattering involves integra-
tion of certain quantities over the angles of observation. For example from Section 13.1.2
it is clear that computing scattering cross-section and scattering integral term requires in-
tegration over zenith and azimuth directions. There are a wide range of methods that can
be used for numerical integration. They can be used depending on various factors starting
from how accurate the result should be to the behaviour of the function. The one which is
implemented in ARTS is the trapezoidal integration method.

19.1 Implementation files

The integration functions can be found in the files:

• math funcs.h

• math funcs.cc

The implementation function AngIntegrate trapezoidis discussed in the second
file.

19.2 Trapezoidal Integration

Trapezoidal Integration method comes under the Newton-Cotes formulas where integra-
tion of a function is approximated by the area under the curve described by the function.
Trapezoidal integration assumes that the area under the curve is trapezoid.

Trapezoidal rule :∫ x2

x1

f(x)dx =
1
2
h(f1 + f2) +O(h3f

′′
) (19.1)

History
220802 Created and written by Sreerekha T.R.
220103 Included mathematical description for implemented integration

method(CE).

186 INTEGRATION FUNCTIONS

This is a two-point formula (x1 and x2). It is exact for polynomials upto and including
degree 1, i.e., f(x) = x. O(h3f

′′
) signifies how far is the true answer from the estimate.

If we use eq. 19.1 N − 1 times, to do the integration in the intervals (x1, x2), (x2, x3),
..., (xN−1, xN), and then add the results, we obtain extended formula for the integral from
x1 to xN .

Extended Trapezoidal rule :∫ xN

x1

f(x)dx =
1
2
h [f1 + 2(f2 + f3 + ...+ fN−1) + fN] +O

[
(b− a)3f

′′

N2

]
(19.2)

The last term tells how much the error will be decreased by taking more number of
steps.

19.3 Solid Angle Integration

In our scattering problem, we are often encountered with a double integration of functions
over zenith and azimuth angles (see Chapter 13). One way to achieve double integration is
to use repeated one-dimensional trapezoidal integration. This is effective of course only if
the boundary is simple and the function is very smooth. If the function is strongly peaked
and if know where it occurs, integral should be broken into smaller regions so that the
integrand is smooth in each. Another thing is to take into account the symmetry of the
function as well as the boundary. For example in our case, if the radiation is symmetric
about the azimuth, the integration in that direction returns constant value of 2π and we need
to do only integration over zenith directions.

The general form of a solid angle integration is

S =
∫

4π
f(ω)dω (19.3)

In spherical coordinates we can write:

S =
∫ π

0

∫ 2π

0
f(θ, φ) sin θ dθdφ (19.4)

A double integration can be splitted into two single integrations:

S =
∫ π

0

(∫ 2π

0
f(θ, φ) sin θdφ

)
dθ (19.5)

=
∫ π

0
g(θ)dθ (19.6)

If we have to integrate a vector, we can apply this method componentwise.
To solve the integral numerically we discretize θ and φ and obtain two angular grids (

[θ0, θ1, · · · , θn] and [φ0, φ1, · · · , φm]). Then we can first calculate g(θj) for all θj unsing the
trapezoidal method.

g(θj) =
m∑
i=1

sin θj
f(θj , φi) + f(θj , φi+1)

2
· (φi+1 − φi) (19.7)

19.3 SOLID ANGLE INTEGRATION 187

The final step is to sum up all g(θj), again applying the trapezoidal method.

S =
n∑
j=1

g(θj) + g(θj+1)
2

· (θj+1 − θj) (19.8)

If the radiation is symmetric about the azimuth we just calculate:

Ssym = 2π
∫ π

0
f(θ) sin(θ)dθ (19.9)

Unsing the trapezoidal method this can be written as:

Ssym = 2π
n∑
j=1

h(θj) + h(θj+1)
2

· (θj+1 − θj) (19.10)

where h(θ) = sin θ · f(θ).

The function AngIntegrate trapezoid takes as input the integrand and the an-
gles over which the integration has to be done. For example in this case it can be the zenith
and azimuth angle grid.

Numeric AngIntegrate_trapezoid(MatrixView Integrand,
ConstVectorView za_grid,
ConstVectorView aa_grid)

The integrand has the same number of rows as zenith angle grid and columns as azimuth
angle grid. The inner loop does trapezoidal integration of the integrand over all azimuth
angles and the result is stored in a Vector res1[i]. Note that the integrand at every point has
to be multiplied with sin (za grid[i] * DEG2RAD) since we are integrating over
solid angles. The outer loop does an integration of res1[i] over all zentih angles. The result
of this is returned back to the calling function.

188 INTEGRATION FUNCTIONS

Chapter 20

Linear algebra functions

Solving the vector radiative transfer equation requires the computation of linear equation
systems and the matrix exponential. This section describes the functions which are imple-
mented in ARTS and it gives instructions how these functions can be used, also for other
purposes than the radiative transfer calculations.

20.1 Implementation files

All the functions described below can be found in the files:

• lin alg.h

• lin alg.cc

The template class Array and the classes Matrix and Vector are used, therefore the
linear algebra functions require the files:

• matpackI.h
• make vector.h

• array.h
• matpackI.cc
• make vector.cc

• array.cc
Furthermore logical functions contained in

• logic.h
• logic.cc

are used to check the dimensions of input matrices for various functions.

History
020502 Created and written by Claudia Emde.

190 LINEAR ALGEBRA FUNCTIONS

20.2 Linear Equation Systems

For solving a set of linear equations

Ax = b (20.1)

the LU decomposition method is implemented.A slightly modified version of the algorithm
described in [Press et al. [1997]] is used here. An alternative method is the Gauss-Jordan
elimination, but this method is three times slower than the LU decomposition method [Press
et al. [1997], p.36]. The LU decomposition method reqires two functions, ludcmp and
lubacksub, which will be decribed below.

The following example for a three dimensional equation sytem demonstrates how to solve
a linear equation sytem of the type (20.1):

• Create matrix A, vector b:
A = Matrix(3,3);
A(1,1) = 4;
A(2,1) = 3;
· · ·
b = Vector(3);
b(1) = 7;
· · ·
• Initialize solution vector x and two other variables needed for storing intermediate

results:
x = Vector(3);
LU = Matrix(3,3);
indx = ArrayOfIndex(3);

• Call LU decomposition function (see Section 20.2.1):
ludcmp(LU, indx, A);

• Call LU backsubstitution function (see Section 20.2.2):
lubacksub(x, LU, b, indx);

• Print the solution vector:
cout << x;

20.2.1 LU Decomposition

A LU decomposition is a procedure for decomposing a square matrix A with dimension n
into a product of a lower triangular matrix L (has elements only on the diagonal elements
and below) and an upper triangular matrix U (has elements only on the diagonal and above):

L ·U = A (20.2)

For a 3 x 3 matrix equation 20.2 would look like this: l11 0 0
l21 l22 0
l31 l32 l33

 ·
 u11 u12 u13

0 u22 u23

0 0 u33

 =

 a11 a12 a13

a21 a22 a23

a31 a32 a33

20.2 LINEAR EQUATION SYSTEMS 191

The decomposition can be used to rewrite the linear set of equations (20.1) in the following
way:

A · x = (L ·U) · x = L · (U · x) = b (20.3)

First

L · y = b (20.4)

is solved for the vector y which can be done by forward substitution (see section 20.2.2).
Then

U · x = y (20.5)

is solved again by backsubstitution. The advantage in breaking up one linear set into two
successive ones is that the solution of a triangular set of equations is quite trivial.

The function ludcmp requires a square matrix of arbitrary dimension n as input and
performs the LU decomposition. It returns one matrix which contains both matrices, L and
U. For the lower triangular matrix L the diagonal elements are chosen to be 1, then the
other elements of L and U are determined. This is possible, as the LU decomposition is
an under determined equation sytem with n2 equations for n2 + n unknowns. The output
matrix does not include the diagonal of L, in the three-dimensional case it has the following
elements: u11 u12 u13

l21 u22 u23

l31 l32 u33

This special arrangement of the LU decomposition is named Crout’s algorithm and a matrix
arranged in this form is named Crout matrix in this context.

Another output variable of the function ludcmp is an index vector which contains in-
formation about pivoting which is absolutely essential for the stability of Crout’s algorithm.
Here partial pivoting, i.e. interchange of rows is implemented. That means that not A is
decomposed into LU -form but a rowwise permutation of A. If the index vector contains for
example the elements (2, 1, 0) the first and the last row of a three dimensional matrix would
be exchanged.

20.2.2 Forward- and Backsubstitution

An equation system of the form a11 a12 a13

0 a22 a23

0 0 a33

 ·
 x1

x2

x3

 =

 b1
b2
b3

can be solved very easy. The last element, here x3, is already isolated, namely

x3 = b3/a33 (20.6)

As x3 is known x2 can be calculated using the second row of the eqautions. Then, finally, x1

can be calculated as well using the first row. This procedure is called backsubtitution. The

192 LINEAR ALGEBRA FUNCTIONS

same method applied for an equation system including a lower triangular matrix is named
forward substitution.

The function lubacksub does forward and backward substitution to solve the equa-
tion system described in 20.2.1. As input it requires the output variables of ludcmp which
are the Crout matrix and the index vector. Output of the function is the solution vector x to
the equation system.

20.2.3 More Applications of the LU Decomposition

• Inverse of a matrix:
To compute (K)−1 · b, which is a part of the solution to the vector radiative transfer
equation (13.10) the LU decomposition method can be used. The following equations
show, that the problem is equivalent to solving a linear equation system of the type
20.1.

K−1 · b = x (20.7)

⇔ K · x = b (20.8)

• To solve the equation system

A ·X = B (20.9)

where A, B and X are matrices of dimension n, the LU decomposition functions can
be applied as well. Assume that A and B are known and you want to solve for X. First
you should do a LU decomposition of A and then backsubstitute with the columns of
B and you get the columns of X as solution vectors.

20.3 Matrix Exponential Function

A very important function for solving differential equations is the matrix exponential:

eAs =
∞∑
k=0

(As)k

k!
(20.10)

In principle it could be computed using the Taylor power series but this method is not
efficient. MOLER and VAN LOAN have shown for the simple example [Moler and Loan
[1979]]

A =

(
−49 24
−64 31

)

that convergence is obtained not until 59 terms. And if a relative accuracy of only 10−5 is
taken, the method even leads to a wrong result due to rounding errors.

20.3 MATRIX EXPONENTIAL FUNCTION 193

20.3.1 Padé Approximation

One of the better algorithms for computing the matrix exponential is the Padé approximation
which is also shortly described in [Moler and Loan [1979]] and outlined in the book “Matrix
Computations” by Golub and Loan [1991]. The method uses perturbation theorie as well
as the so called Padé functions. It is possible to derive an algorithm which calculates

F = eA+E (20.11)

where

‖E‖∞ ≤ δ‖A‖. (20.12)

The accuracy of the computation given by δ can be chosen. The parameter q has to be the
smallest non-negative integer such that ε(q, q) ≤ δ where

ε(p, q) = 23−(p+q) p!q!
(p+ q)!(p+ q + 1)!

. (20.13)

The following table shows values of epsilon for different values of q.

q ε(q,q)
1 0.1667
2 6.9444 · 10−4

3 1.2401 · 10−6

4 1.2302 · 10−9

5 7.7667 · 10−13

6 3.3945 · 10−16

The algorithm is implemented in the function matrix exp. Input to this function is the
matrix A and the parameter q. As output it gives the matrix F which is defined above.
The following example shows how to use the matrix exp function:

• Initialize A and assign values:
Matrix A(3,3);
A(1,1) = 45;
A(1,2) = 3;
· · ·
• Initialize F:
Matrix F(3,3);

• Give a paramater for the accuracy:
Index q=6;

• Call the matrix exponential function:
matrix exp(F,A,q);

• Print the result:
cout << "exp(A) = " << F;

194 LINEAR ALGEBRA FUNCTIONS

Part V

Theoretical background

Chapter 21

Basic radiative transfer theory

When dealing with atmospheric radiation a division can be made between two different
wavelength ranges where the limit is found around 5 µm, i.e. one range consists of the
near IR, visible and UV regions while the second range covers thermal and far IR and
microwaves. The first reason to this division is the principal sources to the radiation in
the two ranges, for wavelengths shorter than 5 µm the solar radiation is dominating while
at longer wavelengths the thermal emission from the surface and the atmosphere is more
important. A second reason is the importance of scattering but here it is impossible to give
a fixed limit. Clouds are important scattering objects for most frequencies but at cloud
free conditions scattering can in many cases be neglected for wavelengths > 5 µm. If
the atmosphere can be assumed to be in local thermodynamic equilibrium the radiative
transfer can be simplified considerably, and this is a valid assumption for the IR region and
microwaves but not for e.g. UV frequencies.

The radiative transfer in the atmosphere must be adequately described in many situ-
ations, as when estimating rates of photochemical reactions, calculating radiative forcing
in the atmosphere or evaluating an remote sensing observation. It is not totally straight-
forward to quantify the radiative transfer with good accuracy because the calculations can
be very computationally demanding and many of the parameters needed are hard to deter-
mine. For example, situations when a great number of transitions or multiple scattering
must be considered will cause long calculations while as a rule scattering is problematic to
model because the shape and size distribution of the scattering particles are highly variable
quantities.

This chapter introduces the theoretical background which is essential to develop a ra-
diative transfer model including scattering. The theory is based on concepts of electro-
dynamics, starting from the Maxwell equations. An elementary book for electrodynamics
is written by Jackson [1998]. For optics and scattering of radiation by small particles the
reader may refer for instance to van de Hulst [1957] and Bohren and Huffman [1998]. The
notation used in this chapter is mostly adapted from the book “Scattering, Absorption, and
Emission of Light by Small Particles” by Mishchenko et al. [2002]. Several lengthy deriva-

History
050224 Copied chapter 1 from Claudia Emde’s phd-thesis.
030305 Copied from a compendium written by Patrick Eriksson.

198 BASIC RADIATIVE TRANSFER THEORY

tions of formulas, which are not shown in detail here, can also be found in this book. The
purpose of this chapter is to provide definitions and give ideas, how these definitions can
be derived using principles of electromagnetic theory. For the derivation of the radiative
transfer equation an outline of the traditional phenomenological approach is given.

21.1 Basic definitions

From the Maxwell equations one can derive the formula for the electromagnetic field vector
E of a plane electromagnetic wave propagating in a homogeneous medium without sources:

E(r, t) = E0 exp
(
−ω
c
mIn̂ · r

)
exp

(
i
ω

c
mRn̂ · r− iωt

)
, (21.1)

where E0 is the amplitude of the electromagnetic wave in vacuum, c is the speed of light in
vacuum, ω is the angular frequency, r is the position vector and n̂ is a real unit vector in the
direction of propagation. The complex refractive index m is

m = mR + imI = c
√
εµ, (21.2)

where mR is the non-negative real part and mI is the non-negative imaginary part. Fur-
thermore µ is the permeability of the medium and ε the permittivity. For a vacuum,
m = mR = 1. The imaginary part of the refractive index, if it is non-zero, determines
the decay of the amplitude of the wave as it propagates through the medium, which is thus
absorbing. The real part determines the phase velocity v = c/mR. The time-averaged
Poynting vector P(r), which describes the flow of electromagnetic energy, is defined as

P(r) =
1
2

Re(〈E(r)〉 × 〈H∗(r)〉), (21.3)

where H is the magnetic field vector and the ∗ denotes the complex conjugate. The Poynting
vector for a homogeneous wave is given by

〈P(r)〉 =
1
2

Re
(√

ε

µ

)
|E0|2 exp

(
−2

ω

c
mIn̂ · r

)
n̂. (21.4)

Equation (21.4) shows that the energy flows in the direction of propagation and its absolute
value I(r) = |〈P(r)〉|, which is usually called intensity (or irradiance), is exponentially
attenuated. Rewriting Equation (21.4) gives

I(r) = I0 exp(−αpn̂ · r), (21.5)

where I0 is the intensity for r = 0. The absorption coefficient αp is

αp = 2
ω

c
mI =

4πmI

λ
=

4πmIν

c
, (21.6)

where λ is the free-space wavelength and ν the frequency. Intensity has the dimension of
monochromatic flux [energy/(area× time)].

21.2 THE STOKES PARAMETERS 199

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

z

x

y

n

O

ψ

ω

ω

ψ

Figure 21.1: Coordinate system to describe the direction of propagation and the polarization
state of a plane electromagnetic wave (adapted from Mishchenko).

21.2 The Stokes parameters

Sensors usually do not measure directly the electric and the magnetic fields associated with
a beam of radiation. They measure quantities that are time averages of real-valued linear
combinations of products of field vector components and have the dimension of intensity.
Examples of such observable quantities are the Stokes parameters. Figure 21.1 shows the
coordinate system used to describe the direction of propagation n̂ and the polarization state
of a plane electromagnetic wave. The unit vector n̂ can equivalently be described by a
couplet (ψ, ω), where ψ ∈ [0, π] is the polar (zenith) angle and ω ∈ [0, 2π) is the azimuth
angle. The electric field at the observation point is given by E = Eψ + Eω, where Eψ

and Eω are the ψ- and ω-components of the electric field vector. Eψ lies in the meridional
plane, which is the plane through n̂ and the z-axis, and Eω is perpendicular to this plane.
The Stokes parameters are defined as linear combinations of products of the amplitudes
Eψ and Eω which form the 4 × 1 column vector I, which is known as the Stokes vector.
Since the Stokes parameters are real-valued and have the dimension of intensity, they can
be measured directly with suitable instruments. The Stokes parameters are a complete set
of quantities needed to characterize a plane electromagnetic wave. They carry information
of the complex amplitudes and the phase difference. The first Stokes parameter I is the
intensity and the other components Q, U and V describe the polarization state of the wave.
For a detailed definition of the Stokes parameters and how they can be measured refer to
Section 22.

200 BASIC RADIATIVE TRANSFER THEORY

21.3 Scattering, absorption and thermal emission by a single
particle

A parallel monochromatic beam of electromagnetic radiation propagates in vacuum without
any change in its intensity or polarization state. A small particle, which is interposed into
the beam, can cause several effects:

Absorption: The particle converts some of the energy contained in the beam into other
forms of energy.

Elastic scattering: Part of the incident energy is extracted from the beam and scattered into
all spatial directions at the frequency of the incident beam. Scattering can change the
polarization state of the radiation.

Extinction: The energy of the incident beam is reduced by an amount equal to the sum of
absorption and scattering.

Dichroism: The change of the polarization state of the beam as it passes a particle.

Thermal emission: If the temperature of the particle is non-zero, the particle emits radia-
tion in all directions over a large frequency range.

The beam is an oscillating plane magnetic wave, whereas the particle can be described
as an aggregation of a large number of discrete elementary electric charges. The incident
wave excites the charges to oscillate with the same frequency and thereby radiate secondary
electromagnetic waves. The superposition of these waves gives the total elastically scattered
field.

One can also describe the particle as an object with a refractive index different from that
of the surrounding medium. The presence of such an object changes the electromagnetic
field that would otherwise exist in an unbounded homogeneous space. The difference of
the total field in the presence of the object can be thought of as the field scattered by the
object. The angular distribution and the polarization of the scattered field depend on the
characteristics of the incident field as well as on the properties of the object as its size
relative to the wavelength and its shape, composition and orientation.

21.3.1 Definition of the amplitude matrix

For the derivation of a relation between the incident and the scattered electric field we con-
sider a finite scattering object in the form of a single body or a fixed aggregate embedded in
an infinite homogeneous, isotropic and non-absorbing medium. We assume that the individ-
ual bodies forming the scattering object are sufficiently large that they can be characterized
by optical constants appropriate to bulk matter, not to optical constants appropriate for sin-
gle atoms or molecules. Solving the Maxwell equations for the internal volume, which is
the interior of the scattering object, and the external volume one can derive a formula, which
expresses the total electric field everywhere in space in terms of the incident field and the
field inside the scattering object. Applying the far field approximation gives a relation be-
tween incident and scattered field, which is that of a spherical wave. The amplitude matrix

21.3 SINGLE PARTICLE SCATTERING 201

S(n̂sca, n̂inc) includes this relation:[
Esca
ψ (rn̂sca)

Esca
ω (rn̂sca)

]
=
eikr

r
S(n̂sca, n̂inc)

[
Einc

0ψ

Einc
0ω

]
. (21.7)

The amplitude matrix depends on the directions of incident n̂inc and scattering n̂sca as well
as on size, morphology, composition, and orientation of the scattering object with respect to
the coordinate system. The distance between the origin and the observation point is denoted
by r and the wave number of the external volume is denoted by k.

The amplitude matrix provides a complete description of the scattering pattern in the
far field zone. The amplitude matrix explicitly depends on ωinc and ωsca even when ψinc

and/or ψsca equal 0 or π.

21.3.2 Phase matrix

The phase matrix Z describes the transformation of the Stokes vector of the incident wave
into that of the scattered wave for scattering directions away from the incidence direction
(n̂sca 6= n̂inc),

Isca(rn̂sca) =
1
r2

Z(n̂sca, n̂inc)Iinc. (21.8)

The 4× 4 phase matrix can be written in terms of the amplitude matrix elements for single
particles [Mishchenko et al., 2002]. All elements of the phase matrix have the dimension
of area and are real. As the amplitude matrix, the phase matrix depends on ωinc and ωsca

even when ψinc and/or ψsca equal 0 or π. In general, all 16 elements of the phase matrix
are non-zero, but they can be expressed in terms of only seven independent real numbers.
Four elements result from the moduli |Sij | (i, j = 1, 2) and three from the phase-differences
between Sij . If the incident beam is unpolarized, i.e., Iinc = (I inc, 0, 0, 0)T , the scattered
light generally has at least one non-zero Stokes parameter other than intensity:

Isca = Z11I
inc, (21.9)

Qsca = Z21I
inc, (21.10)

U sca = Z31I
inc, (21.11)

V sca = Z41I
inc. (21.12)

This is the phenomena is traditionally called “polarization”. The non-zero degree of polar-
ization Equation (22.82) can be written in terms of the phase matrix elements

p =

√
Z2

21 + Z2
31 + Z2

41

Z11
. (21.13)

21.3.3 Extinction matrix

In the special case of the exact forward direction (n̂sca = n̂inc) the attenuation of the
incoming radiation is described by the extinction matrix K. In terms of the Stokes vector
we get

I(rn̂inc)∆S = Iinc∆S −K(n̂inc)Iinc +O(r−2). (21.14)

202 BASIC RADIATIVE TRANSFER THEORY

Here ∆S is a surface element normal to n̂inc. The extinction matrix can also be expressed
explicitly in terms of the amplitude matrix. It has only seven independent elements. Again
the elements depend on ωinc and ωsca even when the incident wave propagates along the
z-axis.

21.3.4 Absorption vector

The particle also emits radiation if its temperature T is above zero Kelvin. According
to Kirchhoff’s law of radiation the emissivity equals the absorptivity of a medium under
thermodynamic equilibrium. The energetic and polarization characteristics of the emitted
radiation are described by a four-component Stokes emission column vector a(r̂, T, ω). The
emission vector is defined in such a way that the net rate, at which the emitted energy crosses
a surface element ∆S normal to r̂ at distance r from the particle at frequencies from ω to
ω + ∆ω, is

W e =
1
r2

a(r̂, T, ω)B(T, ω)∆S∆ω, (21.15)

where W e is the power of the emitted radiation and B is the Planck function. In order to
calculate a we assume that the particle is placed inside an opaque cavity of dimensions large
compared to the particle and any wavelengths under consideration. We have thermodynamic
equilibrium if the cavity and the particle are maintained at the constant temperature T . The
emitted radiation inside the cavity is isotropic, homogeneous, and unpolarized. We can
represent this radiation as a collection of quasi-monochromatic, unpolarized, incoherent
beams propagating in all directions characterized by the Planck blackbody radiation

B(T, ω)∆S∆Ω =
h̄ω3

2π2c2
[
exp

(
h̄ω
kBT

)
− 1

]∆S∆Ω, (21.16)

where ∆Ω is a small solid angle about any direction, h̄ is the Planck constant divided by
2π, and kB is the Boltzmann constant. The blackbody Stokes vector is

Ib(T, ω) =

B(T, ω)

0
0
0

 . (21.17)

For the Stokes emission vector, which we also call particle absorption vector, we can derive

api (r̂, T, ω) = Ki1(r̂, ω)−
∫

4π
dr̂′Zi1(r̂, r̂′, ω), i = 1, . . . , 4. (21.18)

This relation is a property of the particle only, and it is valid for any particle, in thermody-
namic equilibrium or non-equilibrium.

21.3.5 Optical cross sections

The optical cross-sections are defined as follows: The product of the scattering cross section
Csca and the incident monochromatic energy flux gives the total monochromatic power
removed from the incident wave as a result of scattering into all directions. The product

21.4 PARTICLE ENSEMBLES 203

of the absorption cross section Cabs and the incident monochromatic energy flux gives the
power which is removed from the incident wave by absorption. The extinction cross section
Cext is the sum of scattering and absorption cross section. One can express the extinction
cross sections in terms of extinction matrix elements

Cext =
1
I inc

(K11(n̂inc)I inc +K12(n̂inc)Qinc + (21.19)

K13(n̂inc)U inc +K14(n̂inc)V inc), (21.20)

and the scattering cross section in terms of phase matrix elements

Csca =
1
I inc

∫
4π

dr̂(Z11(r̂, n̂inc)I inc + Z12(r̂, n̂inc)Qinc + (21.21)

Z13(r̂, n̂inc)U inc + Z14(r̂, n̂inc)V inc). (21.22)

The absorption cross section is the difference between extinction and scattering cross sec-
tion:

Cabs = Cext − Csca. (21.23)

The single scattering albedo ω0, which is a commonly used quantity in radiative transfer
theory, is defined as the ratio of the scattering and the extinction cross section:

ω0 =
Csca

Cext
≤ 1. (21.24)

All cross sections are real-valued positive quantities and have the dimension of area.
The phase function is generally defined as

p(r̂, n̂inc) =
4π

CscaI inc
(Z11(r̂, n̂inc)I inc + Z12(r̂, n̂inc)Qinc+ (21.25)

Z13(r̂, n̂inc)U inc + Z14(r̂, n̂inc)V inc). (21.26)

The phase function is dimensionless and normalized:

1
4π

∫
4π
p(r̂, n̂inc) dr̂ = 1. (21.27)

21.4 Scattering, absorption and emission by ensembles of inde-
pendent particles

The formalism described in the previous chapter applies only for radiation scattered by a
single body or a fixed cluster consisting of a limited number of components. In reality,
one normally finds situations, where radiation is scattered by a very large group of particles
forming a constantly varying spatial configuration. Clouds of ice crystals or water droplets
are a good example for such a situation. A particle collection can be treated at each given
moment as a fixed cluster, but as a measurement takes a finite amount of time, one measures
a statistical average over a large number of different cluster realizations.

Solving the Maxwell equations for a whole cluster, like a collection of particles in a
cloud, is computationally too expensive. Fortunately, particles forming a random group
can often be considered as independent scatterers. This approximation is valid under the
following assumptions:

204 BASIC RADIATIVE TRANSFER THEORY

1. Each particle is in the far-field zone of all other particles.

2. Scattering by the individual particles is incoherent.

As a consequence of assumption 2, the Stokes parameters of the partial waves can be
added without regard to the phase. If the particle number density is sufficiently small,
the single scattering approximation can be applied. The scattered field in this approach is
obtained by summing up the fields generated by the individual particles in response to the
external field in isolation from all other particles. If the particle positions are random, one
can show, that the phase matrix, the extinction matrix and the absorption vector are obtained
by summing up the respective characteristics of all constituent particles.

21.4.1 Single scattering approximation

We consider a volume element containing N particles. We assume that N is sufficiently
small, so that the mean distance between the particles is much larger than the incident
wavelength and the average particle size. Furthermore we assume that the contribution of
the total scattered signal of radiation scattered more than once is negligibly small. This is
equivalent to the requirement

N 〈Csca〉
l2

� 1, (21.28)

where 〈Csca〉 is the average scattering cross section per particle and l is the linear dimension
of the volume element. The electric field scattered by the volume element can be written as
the vector sum of the partial scattered fields scattered by the individual particles:

Esca(r) =
N∑
n=1

En
sca(r). (21.29)

As we assume single scattering the partial scattered fields are given according to Equation
(21.7):[

[Esca
n (r)]ψ

[Esca
n (r)]ω

]
=
eikr

r
S(r̂, n̂inc)

[
Einc

0ψ

Einc
0ω

]
, (21.30)

where S is the total amplitude scattering matrix given by:

S(r̂, n̂inc) =
N∑
n=1

ei∆nSn(r̂, n̂inc). (21.31)

Sn(r̂, n̂inc) are the individual amplitude matrices and the phase ∆n is given by

∆n = krOn · (n̂inc − r̂), (21.32)

where the vector rOn connects the origin of the volume element O with the nth particle
origin (see Figure 21.2). Since ∆n vanishes in forward direction and the individual extinc-
tion matrices can be written in terms of the individual amplitude matrix elements, the total
extinction matrix is given by

K =
N∑
n=1

Kn = N 〈K〉 , (21.33)

21.4 PARTICLE ENSEMBLES 205

O

1

2

rO1

rO2

point

scattering medium

observation

r

Figure 21.2: A volume element of a scattering medium conststing of a particle ensemble.
O is the origin of the volume element, rO1 connects the origin with particle 1 and rO2

with particle 2. The observation point is assumed to be in the far-field zone of the volume
element.

where 〈K〉 is the average extinction matrix per particle. One can derive the analog equation
for the phase matrix

Z =
N∑
n=1

Zn = N 〈Z〉 , (21.34)

where 〈Z〉 is the average phase matrix per particle. In almost all practical situations, ra-
diation scattered by a collection of independent particles is incoherent, as a minimal dis-
placement of a particle or a slight change in the scattering geometry changes the phase
differences entirely. It is important to note, that the ensemble averaged phase matrix and
the ensemble averaged extinction matrix have in general 16 independent elements. The re-
lations between the matrix elements, which can be derived for single particles, do not hold
for particle ensembles.

206 BASIC RADIATIVE TRANSFER THEORY

21.5 Phenomenological derivation of the radiative transfer
equation

When the scattering medium contains a very large number of particles the single scattering
approximation is no longer valid. In this case we have to take into account that each particle
scatters radiation that has already been scattered by another particle. This means that the ra-
diation leaving the medium has a significant multiple scattered component. The observation
point is assumed to be in the far-field zone of each particle, but it is not necessarily in the
far-field zone of the scattering medium as a whole. A traditional method in this case is to
solve the radiative transfer equation. This approach still assumes, that the particles forming
the scattering medium are randomly positioned and widely separated and that the extinc-
tion and the phase matrices of each volume element can be obtained by incoherently adding
the respective characteristics of the constituent particles. In other words the scattering me-
dia is assumed to consist of a large number of discrete, sparsely and randomly distributed
particles and is treated as continuous and locally homogeneous. Radiative transfer theory
is originally a phenomenological approach based on considering the transport of energy
through a medium filled with a large number of particles and ensuring energy conservation.
Mishchenko [2002] has demonstrated that it can be derived from electromagnetic theory of
multiple wave scattering in discrete random media under certain simplifying assumptions.

In the phenomenological radiative transfer theory, the concept of single scattering by
individual particles is replaced by the assumption of scattering by a small homogeneous
volume element. It is furthermore assumed that the result of scattering is not the transfor-
mation of a plane incident wave into a spherical scattered wave, but the transformation of
the specific intensity vector, which includes the Stokes vectors from all waves contributing
to the electromagnetic radiation field.

The vector radiative transfer equation (VRTE) is

dI(n, ν, T)
ds

= − 〈K(n, ν, T)〉 I(n, ν, T) + 〈a(n, ν, T)〉B(ν, T)

+
∫

4π dn′ 〈Z(n,n′, ν, T)〉 I(n′, ν, T), (21.35)

where I is the specific intensity vector, 〈K〉 is the ensemble-averaged extinction matrix,
〈a〉 is the ensemble-averaged absorption vector, B is the Planck function and 〈Z〉 is the
ensemble-averaged phase matrix. Furthermore ν is the frequency of the radiation, T is the
temperature, ds is a path-length-element of the propagation path and n the propagation
direction. Equation (21.35) is valid for monochromatic or quasi-monochromatic radiative
transfer. We can use this equation for simulating microwave radiative transfer through the
atmosphere, as the scattering events do not change the frequency of the radiation.

The four-component specific intensity vector I = (I,Q, U, V)T fully describes the
radiation and it can directly be associated with the measurements carried out by a radiometer
used for remote sensing. For the definition of the components of the specific intensity vector
refer to Section 22, where the Stokes components are described. Since the specific intensity
vector is a superposition of Stokes vectors, the polarization state of the specific intensity
vector can be analysed in the same way as the polarization state of the Stokes vector.

The three terms on the right hand side of Equation (21.35) describe physical processes
in an atmosphere containing different particle types and different trace gases. The first term

21.5 RADIATIVE TRANSFER EQUATION 207

represents the extinction of radiation traveling through the scattering medium. It is deter-
mined by the ensemble averaged extinction coefficient matrix 〈K〉. For microwave radiation
in cloudy atmospheres, extinction is caused by gaseous absorption, particle absorption and
particle scattering. Therefore 〈K〉 can be written as a sum of two matrices, the particle
extinction matrix 〈Kp〉 and the gaseous extinction matrix 〈Kg〉:

〈K(n, ν, T)〉 = 〈Kp(n, ν, T)〉+ 〈Kg(n, ν, T)〉 . (21.36)

The particle extinction matrix is the sum over the individual specific extinction matri-
ces 〈Kp

i (n, ν, T)〉 of the N different particles types contained in the scattering medium
weighted by their particle number densities npi :

〈Kp(n, ν, T)〉 =
N∑
i=1

npi 〈Kp
i (n, ν, T)〉 . (21.37)

A particle distribution, which can include various particle sizes, shapes and orientations, can
be represented by a single particle type, since it is possible to derive an ensemble averaged
phase matrix 〈Zi〉, an ensemble averaged extinction matrix 〈Ki〉 and an ensemble averaged
absorption vector 〈ai〉. The gaseous extinction matrix is directly derived from the scalar
gas absorption. As there is no polarization due to gas absorption at cloud altitudes, the
off-diagonal elements of the gaseous extinction matrix are zero. At very high altitudes
above approximately 40 km there is polarization due to the Zeeman effect, mainly due to
oxygen molecules. However, in the toposphere and stratosphere molecular scattering can
be neglected in the microwave frequency range. Hence the coefficients on the diagonal
correspond to the gas absorption coefficient:〈

Kg
l,m(ν, T)

〉
= 〈αg(ν, T)〉 ifl = m (21.38)

0 ifl 6= m. (21.39)

where T is the temperature of the atmosphere and 〈αg〉 is the total scalar gas absorption
coefficient, which is calculated from the individual absorption coefficients of all M trace
gases αgi (P, ν, T) and their volume mixing ratios ngi as:

〈αg(ν, T)〉 =
M∑
i=1

ngiα
g
i (ν, T). (21.40)

The second term in Equation (21.35) is the thermal source term. It describes thermal emis-
sion by gases and particles in the atmosphere. The ensemble averaged absorption vector 〈a〉
is

〈a(n, ν, T)〉 = 〈ap(n, ν, T)〉+ 〈ag(ν, T)〉 , (21.41)

where 〈ap〉 and 〈ag〉 are the particle absorption vector and the gas absorption vector, respec-
tively. The particle absorption vector is a sum over the individual absorption vectors 〈api 〉,
again weighted with npi :

〈ap(n, ν, T)〉 =
N∑
i=1

npi 〈api (n, ν, T)〉 . (21.42)

208 BASIC RADIATIVE TRANSFER THEORY

The gas absorption vector is simply

〈ag(ν, T)〉 = (〈αp(ν, T)〉 , 0, 0, 0)T . (21.43)

The last term in Equation (21.35) is the scattering source term. It adds the amount of radia-
tion which is scattered from all directions n′ into the propagation direction n. The ensemble
averaged phase matrix 〈Z〉 is the sum of the individual phase matrices 〈Zi〉 weighted with
npi :

〈
Z(n,n′, ν, T)

〉
=

N∑
i=1

npi
〈
Zi(n,n′, ν, T)

〉
. (21.44)

The scalar radiative transfer equation (SRTE)

dI
ds

(n, ν, T) = −〈K11(n, ν, T)〉 I(n, ν, T) + 〈a1(n, ν, T)〉B(ν, T)

+
∫
4π dn′ 〈Z11(n,n′, ν, T)〉 I(n′, ν, T) (21.45)

can be used presuming that the radiation field is unpolarized. This approximation is rea-
sonable if the scattering medium consists of spherical or completely randomly oriented
particles, where 〈Kp〉 is diagonal and only the first element of 〈ap〉 is non-zero.

21.6 Blackbody radiation

All natural bodies with a temperature > 0 K emit thermal radiation. The thermal motion in
the matter is translated by collisions to excitations in the molecules. The transition from the
excited state to a lower state causes emission of electromagnetic radiation. Depending on
the temperature the distribution of the emission will change. An ideal body that absorbs all
incoming radiation is called a blackbody and its emittance follows Planck’s formula:

B(λ, T) =
2πhc2

λ5

1
ehc/λkbT − 1

(21.46)

where B is the emitted radiation, λ the wavelength, T the temperature, h the Planck con-
stant, c the speed of light and kb the Boltzmann constant. Equation 21.46 is shown in Figure
21.3 for some temperatures.

The maximum of the Planck formula is a function temperature and is given by the
Wien’s displacement law. The maximum of Equation 21.46 is found at:

λmax =
K

T
(21.47)

where is λmax the wavelength of maximum emittance and K = 2.898·10−3 Km. Conse-
quently the maximum is encountered at a shorter wavelength for a higher temperature as
can be seen in Figure 21.3.

No natural object can be said to be a perfect blackbody but the Sun and the Earth can
approximately be treated as blackbodies with temperature of about 6000 and 290 K, respec-
tively, to explain some basic conditions. Wien’s displacement law gives maximum for the
solar radiation at 0.55 µm while the Earth thermal radiation is maximal around 10 µm. The

21.7 SIMPLE SOLUTION WITHOUT SCATTERING AND POLARIZATION 209

10
−1

10
0

10
1

10
2

10
3

10
0

10
5

Wavelength [µm]

E
m

it
ta

n
ce

 [
W

 m
−2

 µ
m

−1
]

6000 K
300 K
260 K

Figure 21.3: The blackbody radiation as a function of wavelength for some temperatures.

solar maximum coincides with a region of high atmospheric transmission and this explains
why the evolution has placed the vision between about 400 - 700 nm, the amount of energy
at surface level is maximal in this range.

If the radiation from the Sun is scaled to compensate for the attenuation due to the dis-
tance it will be found that the radiation from the Earth itself will dominate for wavelengths
longer than about 5 µm. This means, for example, that remote sensing techniques in the
thermal IR and microwave region primarily detect thermal emission from the surface or the
atmosphere while observations in the optical and UV regions use absorbed, scattered or re-
flected solar radiation. This also explains why gases that exhibit absorption between 5 - 50
µm are called greenhouse gases, they absorb partly some of the outgoing radiation from the
surface and the sea.

21.7 Simple solution without scattering and polarization

If scattering can be neglected and the atmosphere is assumed to be in local thermodynamic
equilibrium, the radiative transfer equation gets unusually simple. These assumptions will
be made below and they are normally valid for the infrared region and longer wavelengths as
in the microwave region. For these conditions the atmospheric absorption and emission are
linked and the basic problem to determine the radiative transfer is to calculate the absorp-
tion. At the wavelengths considered rotational and vibrational transitions are the dominating
absorbing processes.

210 BASIC RADIATIVE TRANSFER THEORY

The basic equation describing radiative transfer along a specific direction is

dI(ν)
dl

= −k(l, ν)I(ν) + S(l, ν) (21.48)

where I is the intensity per unit area, ν the frequency, l the distance along the propagation
path, k the total absorption coefficient (summed over all species and transitions) and S
the source term. In this general expression both k and S include effects of scattering, i.e.
energy lost and gained in the viewing direction due to scattering. The discussion will here be
restricted to situations where the scattering can be neglected. This can be a valid assumption
for cloud free conditions and wavelengths greater than a few micrometers. At microwave
wavelengths scattering can normally be neglected also when clouds are present. For the
frequencies considered and altitudes below about 75 km the molecules in the atmosphere
can also be considered to be in local thermodynamic equilibrium. This implies that the de-
excitation and excitation of a transition have the same probability and the absorption and
emission coefficients will be equal. The Kirchoff law then states that the emitted radiance,
the source function, is

S = k(l, ν)B(T (l), ν) (21.49)

For the conditions given, no scattering and local thermodynamic equilibrium, the radia-
tive transfer equation is obtained by combining Equations 21.48 and 21.49. The resulting
differential equation can be solved to give

I(ν) = I0(ν)e−
∫ h
0
k(l′,ν)dl′ +

∫ h

0
k(l, ν)B(T (l), ν)e−

∫ l
0
k(l′,ν)dl′dl (21.50)

where the receiver is assumed to be placed at l = 0 and h is the distance along the path to the
limit of the media. I0 is the intensity at the point h which can represent thermal emission
from the surface, solar radiation at top of the atmosphere or cosmic background radiation
depending on the observation geometry. When discussing radiative transfer the quantity
optical depth, τ , is commonly used and it is defined as

τ(l, ν) =
∫ l

0
k(l′, ν)dl′ (21.51)

and Equation 21.50 can be written as

I(ν) = I0(ν)e−τ(h,ν)dl′ +
∫ h

0
k(l, ν)B(T (l), ν)e−τ(l′,ν)dl (21.52)

The terms inside the integral found in this equation have a simple physical meaning, the
radiation emitted at one point is kBdl and this quantity is attenuated by the factor e−τ

before it reaches the observation point.

21.8 SPECIAL SOLUTIONS 211

Figure 21.4: Schematic picture
of the radiative transfer through a
medium with constant temperature.

Iin

I out

T, τ

21.8 Special solutions

If the total emission along the propagation path can be neglected compared to the transmit-
ted part of the incoming radiation, the radiative transfer equation is simplified to the well
known Beer-Lambert law:

I(ν) = I0(ν)e−τ(h,ν) (21.53)

This equation can for example be used when evaluating solar occultation observations.
If the temperature is constant through the medium studied (Fig. 21.4) the integral in

Equation 21.50 can be solved analytically:

Iout = Iine−τ +B(T, ν)(1− e−τ) (21.54)

where is τ the total optical thickness of the medium. Two special cases can be distinguished.
If the layer is totally optically thick (τ →∞) then Iin is totally absorbed and Iout = B, the
medium emits as a blackbody. If the layer has no absorption (τ = 0) then Equation 21.54
gives Iout = Iin as expected.

In microwave radiometry the measured intensity is normally presented by means of the
brightness temperature, Tb. This quantity is derived from the Rayleigh-Jeans approximation
of the Planck function:

B(T, ν) ≈ 2ν2kbT

c2
=

2kbT
λ2

(21.55)

This equation is valid when hν � kT which is the case in the microwave region due to
the relatively low frequencies. If the temperature is 50 K, hv equals kT at 1.04 THz. The
important aspect of Equation 21.55 is the linear relationship between the intensity and the
physical temperature. The natural definition of brightness temperature, Tb, is then

Tb(ν) =
λ2

2kbT
I(ν) (21.56)

The difference between the brightness temperature and the physical temperature (corre-
sponding to the actual intensity) increases with frequency which is exemplified in Figure

212 BASIC RADIATIVE TRANSFER THEORY

0 50 100 150 200 250 300
10

−1

10
0

10
1

10
2

10 GHz

30 GHz

100 GHz

300 GHz

1000 GHz

Physical temperature [K]

T
−T

b
[K

]

Figure 21.5: The difference between the physical temperarature of a blackbody and the
equivalent brightness temperature calculated using the Rayleight-Jeans approximation.

21.5. The differences for higher frequencies are certainly not negligible and the brightness
temperature shall not be mistaken for the physical temperature. The important fact is that
the brightness temperature has a linear relationship to the intensity and gives a more intu-
itive understanding of the magnitude of the emission. In the Rayleigh-Jeans limit Equation
21.50 can be written as

Tb(ν) = Tb0(ν)e−τ(h,ν)dl′ +
∫ h

0
k(l, ν)T (l)e−τ(l′,ν)dl (21.57)

Chapter 22

Polarization and Stokes parameters

The present version of ARTS implements the radiative transfer equation in tensor form, i.e.,
for the 4 components of the Stokes vector, not just for its first component, the intensity or
radiance. This means that the model can include polarization dependence in absorption or
scattering processes. It is therefore necessary to give some details on the polarization of
radiation, the definition of the Stokes parameters, and the definition of antenna polarization.

22.1 Polarization directions

Electromagnetic waves in homogeneous, isotropic media are transverse waves, i.e., their
oscillating electric and magnetic fields are in a plane perpendicular to the propagation di-
rection. The choice of two basis vectors – we shall call them polarization directions here –
that span that transverse plane is arbitrary; often they are called “horizontal” and “vertical”
and correspond to some horizontal and vertical direction of the particular setting. Never-
theless, what is meant by horizontal/vertical, or parallel/perpendicular, is purely a matter of
definition.

Here, we stick to the system called laboratory frame or fixed frame, used by Mishchenko
or Tsang (FIXME: references): We use a coordinate system where the z-axis points toward
local zenith (FIXME: does the x-axis point toward north?). We denote the propagation
direction of radiation by a unit vector n = k/k, where k is the wave number. n is given
by two angles, the zenith angle θ , i.e., the angle between n and the z-axis, and the azimuth
angle φ, i.e., the angle between the projection of n into the xy-plane and the x-axis:

n =

 cosφ sin θ
sinφ sin θ

cos θ

 (22.1)

Then we define the polarization directions by the partial derivatives of n with respect to
θ and φ. We shall call them θ-direction (also: vertical) and φ-direction (also: horizontal),
respectively, see Figure 22.1. Their unit basis vectors are

History
040524 Section scattering matrices by Patrick Eriksson.
040426 Created and written by Christian Melsheimer.

214 POLARIZATION AND STOKES PARAMETERS

(vert.)

(horiz.)

Figure 22.1: The definition of the polarization directions, adapted from
Mishchenko FIXME: reference

eθ = ev =
∂n
∂θ

/∥∥∥∥∂n∂θ
∥∥∥∥ =

 cosφ cos θ
sinφ cos θ

sin θ

 (22.2)

eφ = eh =
∂n
∂φ

/∥∥∥∥∂n∂φ
∥∥∥∥ =

 − sinφ
cosφ

0

 (22.3)

The vectors n, eθ (=ev), eφ (=eh) are mutually orthogonal and define (in the mentioned
order) a right-handed system, i.e., (n× eθ)·eφ = 1 and the same for all cyclic permutations.

22.2 Plane monochromatic waves

Plane monochromatic electromagnetic waves are commonly written in the form

E(x, t) =
[
Ev
Eh

]
ei(kx−ωt) = (Evev + Eheh) ei(kx−ωt) (22.4)

22.2 PLANE MONOCHROMATIC WAVES 215

where E is the electric field vector, the subscripts v and h denote the components with
vertical and horizontal polarization, respectively. Ev and Eh, the amplitudes, are complex
numbers, k and ω are the wavenumber vector and the angular frequency, respectively, of
the plane wave, and the unit vectors ev = (1, 0)T , eh = (0, 1)T . It is always implicitly
understood that the actual, physical, electric field is the real part of the above expression.
Rewriting the complex amplitudes Ev and Eh using real, non-negative amplitudes av and
ah, and phases δv and δh,

Ev = ave
iδv , Eh = ahe

iδh (22.5)

the actual electric field vector Ẽ is

Ẽ(x, t) = Re[E(x, t)] =
[
av · cos(kx− ωt+ δv)
ah · cos(kx− ωt+ δh)

]
(22.6)

In general, instruments do not measure the electric or magnetic field vectors of an elec-
tromagnetic wave, but rather the time-averaged intensity, i.e., the energy flux, F . This is the
time-averaged Poynting vector (which, in turn, is proportional to the square of the electric
field), thus:

F =
√
ε

µ
(Ẽ(x, t))2 (22.7)

=
√
ε

µ

(
a2
vcos2(kx− ωt+ δv) + a2

hcos2(kx− ωt+ δh)
)

The overline denotes the time average which for cosine squares is 1/2, thus:

F = 1
2

√
ε
µ(a2

v + a2
h) (22.8)

Taking into account that for plane, monochromatic waves the time average always results in
a factor 1

2 , we can also directly write the intensity using the electric field vector in complex
notation (Eq. 22.4).

F = 1
2

√
ε
µE(x, t) ·E∗(x, t) (22.9)

= 1
2

√
ε
µ(EvE∗v + EhE

∗
h)

where the asterisk denotes complex conjugation.
In addition to the flux, three more intensity quantities are defined as in the following

equations. They are called Stokes parameters:

I = 1
2

√
ε
µ(EvE∗v + EhE

∗
h) (22.10)

Q = 1
2

√
ε
µ(EvE∗v − EhE∗h) (22.11)

U = −1
2

√
ε
µ(EvE∗h + EhE

∗
v) (22.12)

V = i1
2

√
ε
µ(EhE∗v − EvE∗h) (22.13)

Written as a row or column vector, (I,Q, U, V) is called Stokes vector. Note that some-
times, S0, S1, S2, S3 is used instead of I , Q, U , V . Using the amplitude/phase notation

216 POLARIZATION AND STOKES PARAMETERS

from Eq. (22.5), we can rewrite the Stokes parameters as

I = 1
2

√
ε
µ(a2

v + a2
h) (22.14)

Q = 1
2

√
ε
µ(a2

v − a2
h) (22.15)

U = −
√

ε
µavah cos(δv − δh) (22.16)

V = −
√

ε
µavah sin(δv − δh) (22.17)

The Stokes parameters fully characterize the electromagnetic wave and therefore contain
the same information as the electric field vector (except for one absolute phase). Since
instruments generally measure intensities (fluxes), describing electromagnetic radiation by
the Stokes parameters is more practical than describing it by the electric (or magnetic) field
vector. Furthermore, the Stokes parameters are always real numbers. Note that the Stokes
parameters are sometimes defined with different signs of Q, U , or V (the definitions and
signs used here are based on Mishchenko et al. [2000]). Moreover, their normalization
may vary. In particular, the Stokes parameters can be normalized to represent radiance or
irradiance (instead of intensity), which is usually done in radiative transfer contexts.

In order understand what the Stokes parameters mean, we have to go back to the electric
field vector and see what polarization state it describes. To do so, we look at the curve that
the tip of the physical electric field vector Ẽ describes with time at a fixed position x0:

Ẽv(t) = av cos(∆v − ωt) (22.18)

Ẽh(t) = ah cos(∆h − ωt) (22.19)

where ∆v,h = kx0 + δv,h. To see that this is an ellipse, we first split the cosines using the
addition theorem:

Ẽv(t) = av cos ∆v cos(ωt) + av sin ∆v sin(ωt) (22.20)

Ẽh(t) = ah cos ∆h cos(ωt) + ah sin ∆h sin(ωt) (22.21)

In order to have the tip of Ẽ describe an ellipse with semi-major axis a0 cosβ and semi-
minor axis a0 sinβ, where a2

0 = a2
v + a2

h, it should have the following form

Ẽv(t) = a0 sinβ cos(ωt) (22.22)

Ẽh(t) = a0 cosβ sin(ωt) (22.23)

Here β must be between −45◦ and 45◦: the tip of the vector Ẽ describes a circle for β =
±45◦ (circular polarization), oscillates along the h-axis for β = 0 (linear polarization)
and else describes an ellipse (cf. Figure 22.2). The sense of rotation is counterclockwise
for positive β (corresponding to left-circular or left-elliptic polarization) and clockwise for
negative β (corresponding to right-circular or right-elliptic polarization). Since | tanβ| is
the ratio of the semi-minor and semi-major axes of the ellipse (the ellipticity), β is called
the ellipticity angle. Note that the semi-major axis is oriented along the positive h-axis. To
have the major axis of the ellipse enclose an arbitrary angle ζ (0 ≤ ζ < 180◦) with the
h-axis, we apply a rotation matrix and get the equation for an ellipse with arbitrary shape
(ellipticity) and orientation (cf. Figure 22.3):

Ẽv(t) = a0(sinβ cos(ωt) cos ζ + cosβ sin(ωt) sin ζ) (22.24)

Ẽh(t) = a0(− sinβ cos(ωt) sin ζ + cosβ sin(ωt) cos ζ) (22.25)

22.2 PLANE MONOCHROMATIC WAVES 217

e h

e v

a
sin

β
0

a cos β0 β
h

v

Figure 22.2: The ellipse that the electric field vector describes with time, with the
major axis oriented along the h-axis.

e v

e h

a
si

n
β

0

a cos β0

v

h

β

ζ

Figure 22.3: The ellipse that the electric field vector describes with time, with the
major axis oriented arbitrarily.

With these definitions, horizontal polarization corresponds to β = 0◦ and ζ = 0◦; vertical
polarization to β = 0◦ and ζ = 90◦; left-circular to β = 45◦ and any value of ζ; right-
circular to β = −45◦ and any value of ζ.

Now we want to establish a direct connection between the parameters β and ζ describing
the shape (ellipticity) and orientation of the polarization ellipse on the one hand, and the
amplitudes av and ah and phases δv and δh of the components of the electric field vector on
the other hand. Comparing the sin(ωt) and cos(ωt) terms in Eqs. (22.24)-(22.25) with the
corresponding terms in Eqs. (22.20)-(22.21), we get:

av cos ∆v = a0 sinβ cos ζ (22.26)

av sin ∆v = a0 cosβ sin ζ (22.27)

and

ah cos ∆h = −a0 sinβ sin ζ (22.28)

ah sin ∆h = a0 cosβ cos ζ (22.29)

218 POLARIZATION AND STOKES PARAMETERS

Multiplying Eq. (22.26) with Eq. (22.28), and Eq. (22.27) with Eq. (22.29) and adding up
the results, we get

avah(cos ∆v cos ∆h + sin ∆v sin ∆h) = a2
0 sin ζ cos ζ(cos2 β − sin2 β) (22.30)

Using the addition theorems for sinusoidals and taking into account that ∆v−∆h = δv−δh:

avah
a2

0

cos(δv − δh) = 1
2 sin(2ζ) cos(2β) (22.31)

In a similar way, subtracting the product of Eq. (22.27) with Eq. (22.28) from the product
of Eq. (22.26) with Eq. (22.29) and adding up the results, we get

− avah
a2

0

sin(δv − δh) = 1
2 sin(2β) (22.32)

The above two equations tell us how to translate the amplitudes (av, ah) and phases (δv, δh)
of the vertical and horizontal component of the electric field into the orientation and shape
of the ellipse that the tip of the electric field vector describes with time. We can obtain one
further relation by subtracting the sum of the squares of Eq. (22.28) and Eq. (22.29) from
the sum of the squares of Eq. (22.26) and Eq. (22.27):

a2
v − a2

h = −a2
0 cos(2ζ) cos(2β) (22.33)

Finally, we use the above 3 equations (22.31), (22.32) and (22.33) to rewrite the Stokes
parameters (Eqs. 22.14-22.17) as

I = 1
2

√
ε
µa

2
0 (22.34)

Q = −1
2

√
ε
µa

2
0 cos(2ζ) cos(2β) (22.35)

U = −1
2

√
ε
µa

2
0 sin(2ζ) cos(2β) (22.36)

V = −1
2

√
ε
µa

2
0 sin(2β) (22.37)

FIXME: β < 0 is right-handed pol. (see above, consistent with Jackson and others); thus
V > 0. This conflicts with Mishchenko’s book (p.26).

Thus, we can get the orientation angle ζ of the ellipse from

tan(2ζ) =
U

Q
(22.38)

Since 0 ≤ 2ζ < 360◦, there are 2 solutions for ζ for a given pair U,Q. This ambiguity is
resolved by looking at Eq. 22.35, taking into account that |β| ≤ 45◦ and thus cos(2β) ≥ 0:
The sign of cos(2ζ) must be the same as the sign of −Q.

We get the ellipticity angle β from

tan(2β) = − V

(Q2 + U2)1/2
(22.39)

I is the total intensity of the radiation,Q is the difference in the intensity of the vertically
and horizontally polarized components (cf. section 22.3, i.e., next section). I is always non-
negative, andQ, U , and V are between +I and−I , since they can be expressed as a product

22.3 MEASURING STOKES PARAMETERS 219

of I with sines and/or cosines (Eqs. 22.35-22.37). Note also that the 4 Stokes parameters
are not independent, since the following equality applies:

I2 = Q2 + U2 + V 2 (22.40)

Some examples of Stokes parameters for specific polarizations are given at the end of the
next section (p. 221)

22.3 Measuring Stokes parameters

The three different ways given so far to write the Stokes parameters (Eqs. 22.10ff.,
Eqs. 22.14ff., Eqs. 22.34ff.) are not very helpful if we actually want to measure the Stokes
parameters. So here we are going to rewrite them while keeping in mind that most instru-
ments can just measure intensities of radiation.

We have seen above that the Stokes parameter Q is the difference in the intensity of the
vertically and horizontally polarized components (Eq. 22.11, or 22.15)

Q = Iv − Ih (22.41)

where

Iv = 1
2

√
ε
µEvE

∗
v (22.42)

Ih = 1
2

√
ε
µEhE

∗
h (22.43)

Thus if we measure Iv and Ih using – for optical wavelengths – a polarizer aligned
with the v- and the h-axis, respectively, or using – for microwaves – two appropriately
aligned dipole antennas, we can directly obtain I by taking their sum and Q by taking their
difference.

U and V can likewise be expressed as differences of intensities, but not with respect to
the linear base evand eh:

We recall Eq. (22.4), omitting the oscillatory term:

E = (Evev + Eheh) (22.44)

Now we want to write E by two components along polarization axes at ±45◦ with
respect to the h-axes. The basis vectors are thus (cf. Figure 22.4)

e+45◦ =
√

1
2 (eh − ev) (22.45)

e−45◦ =
√

1
2 (eh + ev) (22.46)

and we get the field vector in this modified linear basis:

E =
√

1
2 (Ev + Eh)︸ ︷︷ ︸
E−45◦

e−45◦ +
√

1
2 (−Ev + Eh)︸ ︷︷ ︸

E+45◦

e+45◦ (22.47)

With the definitions of intensities of the components,

I−45◦ = 1
2

√
ε
µE−45◦E

∗−45◦ (22.48)

I+45◦ = 1
2

√
ε
µE+45◦E

∗
+45◦ (22.49)

220 POLARIZATION AND STOKES PARAMETERS

e v

e h

e +45°

e −45°

Figure 22.4: Two sets of basis vectors for the linear basis.

we get for their difference:

I−45◦ − I+45◦ = 1
2

√
ε
µ

[
1
2(Ev + Eh)(E∗v + E∗h)− 1

2(−Ev + Eh)(−E∗v + E∗h)
]

(22.50)

= 1
2

√
ε
µ(EvE∗h + EhE

∗
v)

Therefore (cf. Eq. 22.12)

U = I+45◦ − I−45◦ (22.51)

Thus if we measure I+45◦ and I−45◦ using – for optical wavelengths – a polarizer aligned
at +45◦ and −45◦ with respect to the h-axis, respectively, or using – for microwaves – two
appropriately aligned dipole antennas, we can directly obtain U by taking their difference.

In order to see how to measure the fourth Stokes parameter, V , we have to transform
to the circular basis, i.e., express E by a left-hand (LH) and a right-hand (RH) circularly
polarized component. The relevant equations:

Basis vectors

eLH =
√

1
2 (ev + ieh) (22.52)

eRH =
√

1
2 (ev − ieh) (22.53)

Field vector in circular base

E =
√

1
2 (Ev − iEh)︸ ︷︷ ︸

ELH

eLH +
√

1
2 (Ev + iEh)︸ ︷︷ ︸

ERH

eRH (22.54)

Intensity of the components

ILH = 1
2

√
ε
µELHE

∗
LH (22.55)

IRH = 1
2

√
ε
µERHE

∗
RH (22.56)

Their difference

ILH − IRH = 1
2

√
ε
µ

[
1
2(Ev − iEh)(E∗v + iE∗h)− 1

2(Ev + iEh)(E∗v − iE∗h)
]

(22.57)

= i1
2

√
ε
µ(EvE∗h − EhE∗v)

22.3 MEASURING STOKES PARAMETERS 221

Therefore (cf. Eq. 22.13):

V = IRH − ILH (22.58)

Thus if we measure IRH and ILH using – for microwaves – appropriate helical beam anten-
nas, we can directly obtain V by taking their difference. Unfortunately, for optical wave-
lengths, we cannot measure IRH and ILH directly with the help of filters like polarizers and
retarders1. However, a combination of a retarder and a polarizer can be used to measure the
sum of I and V :

The light first passes through a retarder that delays the phase of the horizontally po-
larized component by 90◦ with respect to the phase of the vertically polarized component
(a quarter-wave plate). A phase delay by 90◦can be expressed as a multiplication of the
horizontal component by i, so the resulting electric field vector E′ is

E′ = (Evev + iEheh) (22.59)

The light then passes through a polarizer that is aligned at −45◦ with respect to the h-axis.
This means we have to project E′ onto e−45◦ , resulting in

E′′ = (E′ · e−45◦)e−45◦ =
√

1
2 (Ev + iEh) e−45◦ (22.60)

Measuring the intensity now, we get

I ′′ =
∣∣E′′∣∣2 (22.61)

= 1
2 (Ev + iEh) (E∗v − iE∗h)

= 1
2

(|Ev|2 + |Eh|2 − i(EvE∗h − EhE∗v)
)

= 1
2(I + V)

Here is a summary of the Stokes parameters in terms of intensities of orthogonal com-
ponents:

I = Iv + Ih = I−45◦ + I+45◦ = IRH + ILH (22.62)

Q = Iv − Ih (22.63)

U = I+45◦ − I−45◦ (22.64)

V = IRH − ILH (22.65)

We see that Q and U are both related to linear polarization, while V is related to circular
polarization.

Here are the Stokes parameters for some standard polarizations:

polarization (I , Q, U , V)
horizontal (I ,−I , 0, 0)

vertical (I ,+I , 0, 0)
linear ±45◦ (I , 0,∓I , 0)

right-circular (I , 0, 0, I)
left-circular (I , 0, 0,−I)

1A retarder allows the phase of two orthogonal components of light to be varied with respect to each other

222 POLARIZATION AND STOKES PARAMETERS

22.4 Partial polarization

The equality I2 = Q2 +U2 +V 2 (Eq. 22.40) is valid for the ideal case of a monochromatic
plane wave that is completely polarized, i.e., where the amplitudes av and ah and the phases
δv and δv are fixed and do not vary with time. This means that the plane wave is emitted by
one coherent source.

In reality, i.e., in the case of natural radiation, the amplitudes and phases fluctuate, since
the radiation originates from several sources that do not emit radiation coherently, and since
the emission from one source usually has very short coherence times. This means that
we usually have a superposition of radiation from several incoherent sources, and that the
polarization state of the radiation from each source fluctuates as well2. Typically, such fluc-
tuations have time scales that are longer than the period (2π/ω) of the oscillation, but that
are still shorter than the integration time of the instrument that measures the radiation. Thus,
the instrument measures an incoherent superposition of time averages over of the fluctuating
polarization. If the fluctuations are random for all the sources and if the different sources
emit incoherently and are not in any way oriented, then there is no preferred orientation,
ellipticity or handedness of the emitted radiation, which is then called unpolarized. This
is the case for radiation from the sun. If the fluctuations are not completely random, the
radiation is called partially polarized.

To quantify this rather heuristic argumentation, we express the above-mentioned ideas
in the language of the Stokes parameters: The Stokes parameters I , Q, U , V derived from
measurements result from the superposition of radiation from many sources and/or the av-
erage over emission events with individual Stokes parameters Ii, Qi, Ui, Vi. Since the
different sources and/or emission events are incoherent, the Stokes parameters – which are
intensity, not amplitude quantities – can simply be added up:

I =
∑
i

Ii , Q =
∑
i

Qi , U =
∑
i

Ui , V =
∑
i

Vi (22.66)

In the case of unpolarized radiation, i.e., when the amplitudes and phases, or equivalently,
the orientation angle ζ and the ellipticity angle β are random (uniformly distributed), Q, U ,
and V each cancel out.

The equality I2
i = Q2

i + U2
i + V 2

i (cf. Eq. 22.40) still holds for each contribution i, but
for the resulting I,Q, U, V , we have in general the inequality

I2 ≥ Q2 + U2 + V 2 (22.67)

To prove it, we must once again go back to the amplitude/phase notation (Eqs. 22.14ff.), also
cf. Chandrasekhar [1960, chap. I.15], but we shall omit the factor 1

2

√
ε
µ on the right-hand

sides, for the sake of better readability:

I =
∑
i

Ii =
∑
i

(
a(i)
v

)2
+
∑
i

(
a

(i)
h

)2
(22.68)

Q =
∑
i

Qi =
∑
i

(
a(i)
v

)2 −
∑
i

(
a

(i)
h

)2
(22.69)

U =
∑
i

Ui = −2
∑
i

a(i)
v a

(i)
h cos δ(i) (22.70)

2This does, of course, not apply to coherent sources like lasers or coherent radars

22.4 PARTIAL POLARIZATION 223

V =
∑
i

Vi = 2
∑
i

a(i)
v a

(i)
h sin δ(i) (22.71)

(22.72)

where δ(i) = δ
(i)
v − δ(i)

h . We get

I2 −Q2 − U2 − V 2 = 4
∑
i

(
a(i)
v

)2∑
i

(
a

(i)
h

)2
(22.73)

−4

(∑
i

a(i)
v a

(i)
h cos δ(i)

)2

−4

(∑
i

a(i)
v a

(i)
h sin δ(i)

)2

The first term on the right-hand side can be rearranged as∑
i

(
a(i)
v a

(i)
h

)2
+
∑
i,j
i 6=j

(
a(i)
v a

(j)
h

)2
(22.74)

The other two terms can be rearranged similarly to yield:

−
∑
i

(
a(i)
v a

(i)
h

)2 [
cos2 δ(i) + sin2 δ(i)

]
(22.75)

−
∑
i,j
i6=j

a(i)
v a

(i)
h a

(j)
v a

(j)
h

[
cos δ(i) cos δ(j) + sin δ(i) sin δ(j)

]

Putting this into Eq. 22.73 (and dividing by 4), the sums over just i cancel and we get:

(I2 −Q2 − U2 − V 2)/4 =
∑
i,j
i 6=j

(
a(i)
v a

(j)
h

)2
(22.76)

−
∑
i,j
i 6=j

a(i)
v a

(i)
h a

(j)
v a

(j)
h cos(δ(i) − δ(j))

where the cosine addition theorem was used. In the summation, we now change from i 6= j
to i < j, so we have to symmetrize the first term (the second term is already symmetric
with respect to i and j and therefore just gets a factor 2):

(I2 −Q2 − U2 − V 2)/4 =
∑
i,j
i<j

[(
a(i)
v a

(j)
h

)2
+
(
a(j)
v a

(i)
h

)2
(22.77)

−2
(
a(i)
v a

(j)
h

) (
a(j)
v a

(i)
h

)
cos(δ(i) − δ(j))

]
Each summand of the sum on the right-hand side is positive, since it is greater than or equal
to (a(i)

v a
(j)
h − a(j)

v a
(i)
h)2, which completes the proof. The right-hand side vanishes only if

δ(i) = δ(j) and a(i)
v /a

(i)
h = a

(j)
v /a

(j)
h for all i, j, i.e., if the phase difference and amplitude

ratio between the horizontal and vertical component of the electric field is the same for all
contributions, in other words: if all contributions have the same polarization.

224 POLARIZATION AND STOKES PARAMETERS

For completeness, we shall now restate the definition of the Stokes component, extended
to include natural radiation (i.e., including the case of partially polarized and unpolarized
radiation). Instead of summing over the individual emission events, we use ensemble aver-
ages, denoted by angular brackets:

I = 1
2

√
ε
µ 〈EvE∗v + EhE

∗
h〉 (22.78)

Q = 1
2

√
ε
µ 〈EvE∗v − EhE∗h〉 (22.79)

U = −1
2

√
ε
µ 〈EvE∗h − EhE∗v〉 (22.80)

V = i1
2

√
ε
µ 〈EhE∗v − EvE∗h〉 (22.81)

Except for the ensemble average 〈..〉, the definition is identical to the one for monochro-
matic, plane waves (Eqs. 22.10 to 22.13).The same applies to the second and third defini-
tions of the Stokes parameters (Eqs. 22.14 to 22.17 and Eqs. 22.34 to 22.37, respectively).
Note that the fourth definition (Eqs. 22.62 to 22.65) which uses sums and differences of
intensities, is equally valid for fully polarized, partially polarized and unpolarized radiation.
The definition of intensities, however, has to include the ensemble average: Ih = 〈EhE∗h〉
etc.

Now we can define a measure for the degree of polarization, p, as:

p =
√
Q2 + U2 + V 2

I
(22.82)

For completely polarized radiation, Q2 + U2 + V 2 = I2, so p = 1, and for unpolarized
radiation, Q = U = V = 0, so p = 0.

Furthermore, it can be convenient to define the the polarized component of radiation by

I2
p = Q2 + U2 + V 2 (22.83)

and the unpolarized component as

Iu = I − Ip (22.84)

Thus, partially polarized radiation, described by a Stokes vector (I,Q, U, V), can be re-
garded as as a superposition of completely polarized radiation described by the Stokes vec-
tor (Ip, Q, U, V) and unpolarized radiation described by the Stokes vector (Iu, 0, 0, 0). We
see that the Stokes parameter formalism can conveniently deal with partially polarized and
with unpolarized radiation, much in contrast to the formalism using the electric field (am-
plitude and phase).

In addition to the degree of polarization, p, we can define measures for the circularity
and the linearity of the polarization. Recalling Eqs. (22.64) and (22.65), we can define the
degree of linear polarization, plin, as

plin =
√
Q2 + U2

I
(22.85)

and the the degree of circular polarization, pcirc, as

pcirc =
V

I
(22.86)

22.4 PARTIAL POLARIZATION 225

22.4.1 Polarization of Radiation in the Atmosphere

The radiation encountered in atmospheric sounding (for which ARTS is intended) is natu-
ral radiation, coming from the sun, space (cosmic background), and/or the atmosphere and
the Earth surface (thermal radiation, scattered radiation)3. Radiation from the sun is un-
polarized, as already mentioned; the same applies for the cosmic background. In contrast,
radiation emitted by the ground can be weakly polarized, dependent on material, texture
and direction. Radiation emitted by the atmosphere (thermal radiation) is almost unpolar-
ized because of the random orientation of the air molecules. An exception might be caused
by the Zeeman effect induced in oxygen molecules by the – anisotropic – Earth’s magnetic
field. Scattering of radiation by oriented particles, e.g. cirrus clouds, is sensitive to polar-
ization, and generally increases the degree of polarization. Typically I > |Q| > |U |, |V |.

FIXME: Give some typical numbers for the relative magnitude of I , Q, U , V for real-
istic radiation in relevant cases (I � Q� U, V when?)

22.4.2 Antenna polarization

Finally we want to know what an antenna of arbitrary polarization response (antenna polar-
ization) measures if radiation of some other arbitrary polarization is incident on it.

In order to clarify the concept, we first consider some trivial examples: We assume an
antenna that receives only vertically polarized radiation.

• If the incident radiation is fully horizontally polarized, the antenna will measure noth-
ing.

• If the incident radiation is fully vertically polarized, the antenna will measure the full
intensity of the radiation.

• If the radiation is fully left- or right-circularly polarized, the antenna will measure half
of the full intensity, for circularly polarized radiation is made up of equal portions of
vertically and horizontally polarized radiation, superimposed with a phase lag of 90◦.

In order to be able to describe the general case, we first have to formalize the description
of the antenna polarization. Polarized radiation is described by

1. the Jones vector, or

2. the Stokes vector, or

3. intensity, I , orientation angle, ζ (i.e., the angle between the major axis of the polar-
ization ellipse and the horizontal polarization direction), and ellipticity angle, β (see
p. 216).

Since the intensity of the radiation is the absolute square (the squared “length”) of the
complex Jones vector, or, in other words, the first Stokes component, I , the polarization
alone is defined by

1. a normalized Jones vector, or
3This is not so for active sounding techniques that use a coherent source, such as lidar.

226 POLARIZATION AND STOKES PARAMETERS

2. three normalized Stokes components Q, U , and V (where Q2 + U2 + V 2 = 1), or

3. the orientation angle ζ and the ellipticity angle β (see Eq. 22.38 to 22.39).

In the same way, the polarization of the antenna can be described in one of three ways:

1. a normalized Jones vector

e =
[
ev
eh

]
where e · e∗ = 1 (22.87)

(note that in the scalar product of two complex vectors, the second one has to be
complex-conjugated.)

2. a normalized Stokes vector

i = (1, q, u, v) where q2 + u2 + v2 = 1 (22.88)

3. the two angles ζ and β. According to Eq. 22.34 to 22.37, we have:

q = − cos(2ζ) cos(2β) (22.89)

u = − sin(2ζ) cos(2β) (22.90)

v = − sin(2β) (22.91)

Now we can calculate the intensity I ′ the antenna measures. In terms of the electrical
fields, i.e., Jones vectors, we just have to project the Jones vector E of the incident radiation
onto the normalized Jones vector e of the antenna,

E′ = (E · e∗)e (22.92)

(this is in effect like passing through a polarizer) and then take its absolute square

I ′ = 1
2

√
ε
µ |E′|2 = 1

2

√
ε
µ |(E · e∗)|2 (22.93)

With some elementary algebra (mainly using that 1
2

√
ε
µEvE

∗
v = (I + Q)/2,

1
2

√
ε
µEhE

∗
h = (I − Q)/2, 1

2

√
ε
µEvE

∗
h = −(U − iV)/2 which follow immediately from

Eq. 22.10 to 22.13) this can be rewritten in terms of the of the Stokes vector I of the incident
radiation and the Stokes vector i of the antenna. It turns out to be just a scalar product:

I ′ =
1
2
i · I (22.94)

22.5 THE SCATTERING AMPLITUDE MATRIX 227

22.5 The scattering amplitude matrix

The electric field, [Ev, Eh]T , originating from a single scattering event of an incident elec-
tric field [E0

v , E
0
h]T may in the far field be written as (c.f. Eq. 21.7)[

Ev
Eh

]
= f(r)

[
S2 S3

S4 S1

] [
E0
v

E0
h

]
, (22.95)

where Sj are the scattering amplitude functions and all distance effects are put into the
function f(r). Using Stokes based nomenclature, the equation above becomes

I
Q
U
V

 = g(r)F

I0

Q0

U0

V 0

 , (22.96)

where all distance effects are put into the function g(r) and the transformation matrix F can
be expressed as [Liou, 2002, Sec. 5.4.3].

F =

1
2

(M2+M3+M4+M1) 1
2

(M2−M3+M4−M1) S23+S41 −D23−D41

1
2

(M2+M3−M4−M1) 1
2

(M2−M3−M4+M1) S23−S41 −D23+D41

S24+S31 S24−S31 S21+S34 −D21+D34

D24+D31 D24−D31 D21+D34 S21−S34

 . (22.97)

The elements of F are finally given by the following expressions:

Mk = |Sk|2, (22.98)

Skj = Sjk = (SjS∗k + SkS
∗
j)/2, (22.99)

−Dkj = Djk = i(SjS∗k − SkS∗j)/2, j, k = 1, 2, 3, 4. (22.100)

Depending on the properties of the scattering event, the structure of the matrix F differs.
Two special cases are:

S1 = S2, S3 = S4 = 0 → F =

x 0 0 0
0 x 0 0
0 0 x 0
0 0 0 x

 , (22.101)

S3 = S4 = 0 → F =

x x 0 0
x x 0 0
0 0 x x
0 0 x x

 , (22.102)

where x indicates elements deviating from 0. Many (most?) natural materials have the
property that S4 is the complex conjugate of S3 (S3 = S∗4) and this results in that F is a
symmetric matrix (in general with all element positions filled).

228 POLARIZATION AND STOKES PARAMETERS

Part VI

Bibliography and Appendices

Bibliography

Anderson, G. P., S. A. Clough, F. X. Kneizys, J. H. Chetwynd, and E. P. Shettle, AFGL
atmospheric constituent profiles (0–120 km), Tech. Rep. TR-86-0110, AFGL, 1986.

Balluch, M., and D. Lary, Refraction and atmospheric photochemistry, J. of Geophys. Res.,
102, 8845–8854, 1997.

Bohren, C., and D. R. Huffman, Absorption and Scattering of Light by Small Particles,
Wiley Science Paperback Series, 1998.

Chandrasekhar, S., Radiative Transfer, Dover Publications, New York, 1960.

Czekala, H., Microwave radiative transfer calculations with multiple scattering by non-
spherical hydrometeors, Ph.D. thesis, Rheinische Friedrich-Wilhems-Universitt Bonn,
Auf dem Hgel 20, 53121 Bonn, 1999.

Davis, C. P., C. Emde, and R. S. Harwood, A 3d polarized reversed monte carlo radiative
transfer model for mm and sub-mm passive remote sensing in cloudy atmospheres, IEEE
Transactions on Geoscience and Remote Sensing, submitted, 2004.

Degl’Innocenti, E. L., and M. L. Degl’Innocenti, Solar Physics, 97, 239, 1985.

Emde, C., A polarized discrete ordinate scatterig model for radiative transfer simulations in
spherical atmospheres with thermal source, Ph.D. thesis, University of Bremen, 2005.

Emde, C., and T. R. Sreerekha, Development of a RT model for frequencies between
200 and 1000 GHz, WP1.2 Model Review, Tech. rep., ESTEC Contract No AO/1-
4320/03/NL/FF, 2004.

Emde, C., S. A. Buehler, C. Davis, P. Eriksson, T. R. Sreerekha, and C. Teichmann, A
polarized discrete ordinate scattering model for simulations of limb and nadir longwave
measurements in 1D/3D spherical atmospheres, J. of Geophys. Res., 109, 2004.

Eriksson, P., Microwave radiometric observations of the middle atmosphere: Simulations
and inversions, Ph.D. thesis, School of Electrical and Computer Engineering, Chalmers
University of Technology, Sweden, 1999.

Eriksson, P., and F. Merino, On simulating passive observations of the middle atmosphere
in the range 1 - 1000 GHz, Tech. Rep. 179, Department of Radio and Space Science,
Chalmers University of Technology, Sweden, 1997.

232 BIBLIOGRAPHY

Eriksson, P., F. Merino, D. Murtagh, P. Baron, P. Ricaud, and J. de la Nöe, Studies for
the Odin sub-millimetre radiometer: 1. Radiative transfer and instrument simulation, to
appear in Canadian Journal of Physics, 2000.

Eriksson, P., M. Ekström, S. Bühler, and C. Melzheimer, Efficient forward modelling by
matrix representation of sensor responses, International Journal of Remote Sensing, 27,
1793–1808, 2006.

Evans, K. F., S. J. Walter, A. J. Heymsfield, and M. N. Deeter, Modeling of submillimeter
passive remote sensing of cirrus clouds, J. Appl. Met., 37, 184–205, 1998.

Golub, G. H., and C. F. V. Loan, Matrix computations, Johns Hopkins series in the mathe-
matical sciences ; 3, 2nd ed., Hopkins Univ. Press, 1991.

Hochstadt, H., Differential Equations: A Modern Approach, Holt, Rinehart, and Winston,
1964.

Ishimoto, H., and K. Masuda, A monte carlo approach for the calculation of polarized
light: application to an incident narrow beam, Journal of Quantitative Spectroscopy and
Radiative Transfer, 72, 462–483, 2002.

Jackson, J. D., Classical electrodynamics, John Wiley & Sons, New York, 1998.

Kyle, T., Atmospheric transmission, emission and scaterring, Pergamon Press, 1991.

Liou, K. N., An introduction to atmospheric radiation, 2nd ed., Academic Press, 2002.

Liu, J. S., Monte Carlo Strategies in Scientific Computing, Springer-Verlag, 2001.

Liu, Q., C. Simmer, and E. Ruprecht, Three-dimensional radiative transfer effects of clouds
in the microwave spectral range, J. of Geophys. Res., 101, 4289–4298, 1996.

McFarquhar, G. M., and A. J. Heymsfield, Parametritation of tropical cirrus ice crystal size
distributions and implications for radiative transfer: Results from CEPEX, Journal of the
Atmospheric Sciences, 54, 2187–2200, 1997.

Mishchenko, M. I., Calculation of the amplitude matrix for a nonspherical particle in a fixed
orientation, Appl. Opt., pp. 1026–1031, 2000.

Mishchenko, M. I., Vector radiative transfer equation for arbitrarily shaped and arbitrarily
oriented particles: a microphysical derivation from statistical electromagnetics, Applied
Optics, 41, 7114–7134, 2002.

Mishchenko, M. I., and L. D. Travis, Capabilities and limitations of a current fortran imple-
mentation of the t-matrix method for randomly oriented rotationally symmetric scatterers,
J. Quant. Spectrosc. Radiat. Transfer, 60, 309–324, 1998.

Mishchenko, M. I., J. W. Hovenier, and L. D. Travis, eds., Light Scattering by Nonspherical
Particles, Academic Press, 2000, ISBN 0-12-498660-9.

Mishchenko, M. I., L. D. Travis, and A. A. Lacis, Scattering, Absorption and Emission of
Light by Small Particles, Cambridge University Press, 2002, ISBN 0-521-78252.

BIBLIOGRAPHY 233

Moler, C. B., and C. F. V. Loan, Nineteen dubious ways to compute the exponential of a
matrix, SIAM Review, 20, 801–836, 1979.

Montenbruck, O., and E. Gill, Satellite orbits: Models, methods and applications, Springer
Verlag, 2000.

Oikarinen, L., E. Sihvola, and E. Kyrola, Multiple scattering radiance in limb-viewing ge-
ometry, J. of Geophys. Res., 104, 31261–31274, 1999.

Press, W., S. Teukolsky, W. Vetterling, and B. Flannery, Numerical recipes in C, 2nd ed.,
Cambridge University Press, 1997.

Roberti, L., and C. Kummerow, Monte carlo calculations of polarized microwave radiation
emerging from cloud structures, J. of Geophys. Res., 104, 2093–2104, 1999.

Rodgers, C., Inverse methods for atmospheric sounding: Theory and practise, 1st ed.,
World Scientific Publishing, 2000.

Rodgers, C. D., Characterization and error analysis of profiles retrieved from remote sound-
ing measurements, J. of Geophys. Res., 95, 5587–5595, 1990.

Rosenkranz, P. W., Absorption of microwaves by atmospheric gases, in Atmospheric remote
sensing by microwave radiometry, edited by M. A. Janssen, pp. 37–90, John Wiley &
Sons, Inc., 1993, ftp://mesa.mit.edu/phil/lbl_rt.

Rothman, L. S., et al., The HITRAN molecular spectroscopic database and HAWKS (HI-
TRAN atmospheric workstation): 1996 edition, Journal of Quantitative Spectroscopy
and Radiative Transfer, 60, 665–710, 1998.

Ulaby, F., R. Moore, and A. Fung, Microwave remote sensing: Active and passive, Volume
I: Microwave remote sensing fundamentals and radiometry, Addison-Wesley Publishing
Company, 1981, ISBN 0-201-10759-7 (v. 1).

van de Hulst, H., Light Scattering by Small particles, Dover Publications, New York, 1957,
corrected republication 1981.

234 BIBLIOGRAPHY

Part VII

Index

Index

1D, 15
2D, 15
3D, 13

agendas, 145
antenna pattern dimensionality, 22
ARTS files

agenda class.cc, 146
agenda class.h, 146
agenda record.cc, 146
agenda record.h, 146
agendas.cc, 145
array.h, 153
arts-x.y.tar.gz, 143
arts.h, 136
arts/INSTALL, 134
arts/README, 134
auto md.cc, 146
auto md.h, 140, 146
auto wsv.h, 146
auto wsv groups.h, 145
auto wsv pointers.cc, 146
ChangeLog, 142
config.h, 134
configure.in, 136, 142
gas abs lookup.cc, 41
gas abs lookup.h, 41
gridded fields.cc, 37
gridded fields.h, 37
groups.cc, 139, 145, 147
interpolation.cc, 171
interpolation.h, 171
m atmosphere.cc, 47
m cloudbox.cc, 104, 118
m general.cc, 140
m general.h, 140
m optproperties.cc, 104, 118
m ppath.cc, 47

m scatrte.cc, 118
make array.h, 154
make auto md cc.cc, 146
make auto md h.cc, 146
make auto wsv groups h.cc, 146
make auto wsv h.cc, 146
make auto wsv pointers cc.cc, 146
make vector.cc, 153
make vector.h, 153
Makefile.am, 134, 135
matpackI.cc, 153
matpackI.h, 153
matpackII.h, 154
matpackIII.h, 153
matpackIV.h, 153
matpackV.h, 153
matpackVI.h, 153
matpackVII.h, 153
methods.cc, 140, 145, 147
methods.h, 146
methods aux.cc, 146
optproperties.cc, 104
optproperties.h, 98
ppath.cc, 47, 54
ppath.h, 47
src/Makefile.am, 140
Test, 141
test interpolation.cc, 171, 177
test matpack.cc, 154
test sparse.cc, 154
tests, 10
tests/, 141
tests/DOIT/TestDOIT.arts, 141
tests/Makefile.am, 141
tests/MonteCarlo/TestMonteCarloGaussian.arts,

141
tests/testall.py, 141
workspace.cc, 139, 145, 147

238 INDEX

workspace aux.cc, 146
wsv aux.cc, 146
wsv aux.h, 146
xml io array types.cc, 139
xml io basic types.cc, 139
xml io compound types.cc, 139
xml io instantiation.h, 139

atmospheric dimensionality, 13
atmospheric field, 17
azimuth angle, 21

Blue Interpolation, 172

cloud box, 18
Coordinate systems, 97
curvature radius, 70

data reduction, 22, 34
data reduction matrix, 35
data types

Agenda, 146
AgRecord, 146
Array, 166
ArrayOfIndex, 167
ArrayOfString, 167
ConstMatrixView, 159
ConstVectorView, 155
GasAbsLookup, 41
GField3, 37, 97, 105
GridPos, 172
Index, 135
Matrix, 158
MatrixView, 159
MdRecord, 146
MRecord, 146
Numeric, 135, 154
Ppath, 47, 50
Range, 155
SingleScatteringData, 97, 98, 105
Sparse, 168
Tensor3, 162
Tensor4, 162
Tensor5, 162
Tensor6, 162
Tensor7, 162
Vector, 154
VectorView, 155

WsvRecord, 146
Discrete Ordinate ITerative (DOIT) method,

107
double, 54

float, 54
forward model, 33

generic workspace methods, 9
geocentric latitude, 70
geodetic latitude, 70
geoid, 18
geoid ellipsoid, 69
geometrical altitude, 17
geometrical factor, 56
Green Interpolation, 172

internal ARTS functions
cart2poslos, 63
cart2sph, 61
define md data, 140
do gridcell 2d, 53, 54, 59
do gridcell 3d, 53, 59
do gridrange 1d, 53, 58
geometrical ppc, 56
geompath from r1 to r2, 58
geomppath l at r, 57
geomppath lat at za, 57
geomppath r at l, 57
geomppath r at lat, 57
geomppath r at za, 57
geomppath za at r, 57
gridpos, 171, 173
gridpos2gridrange, 55
gridpos check fd, 55
gridpos force end fd, 55
interp, 171, 176
interpweights, 171, 174
iy calc, 51
poly root solve, 59
poslos2cart, 62
ppath calc, 52
ppath end 1d, 53
ppath end 2d, 54
ppath start 1d, 53
ppath start 2d, 54
ppath start stepping, 52, 63

INDEX 239

ppath step geom 1d, 53
ppath step geom 2d, 53, 54
ppath step geom 3d, 53
psurface crossing 2d, 58
psurface crossing 3d, 63
push back, 168
raytrace 1d linear euler, 67
raytrace 2d linear euler, 68
raytrace 3d linear euler, 69
refr gradients 2d, 68
refr gradients 3d, 69
sph2cart, 61
surface specular los, 78
transform, 161, 165
transpose, 161

Interpolation, 171
Interpolation weights, 173

laboratory frame, 97
latitude, 17
line-of-sight, 20
longitude, 17

measurement block, 22
measurement errors, 33
measurement sequence, 22
meridian plane, 21
model atmosphere, 17
model parameter vector, 33
monochromatic, 34

nadir, 70

particle size distribution, 102
particle types, 100
pencil beam, 34
polar coordinate system, 15
pressure, 15
pressure altitude, 15
propagation path, 24

radiation field, 107
radiative background, 25
radius, 15
ray tracing, 25, 64

scalar radiative transfer, 19, 111
scattering frame, 97

sensor characteristics, 21
sensor position, 20
sensor transfer matrix, 22, 34
sensor, the, 20
Sequential update, 112
single scattering approximation, 112
Single scattering properties, 97
Specific workspace methods, 8
spherical coordinate system, 13
state vector, 33
surface altitude, 18

vector radiative transfer, 19
vector radiative transfer equation, 108
vector space, 35

weighting function, 35
workspace, 7
workspace agendas

abs scalar gas agenda, 44
doit conv test agenda, 123
doit main agenda, 120
doit mono agenda, 120, 122
doit rte agenda, 122
doit scat field agenda, 122
iy cloudbox agenda, 27, 124
iy space agenda, 27
iy surface agenda, 28
pha mat spt agenda, 121
ppath step agenda, 25, 48, 52
spt calc agenda, 122
surface prop agenda, 78
ybatch calc agenda, 93

workspace methods, 7, 145
abs fieldCalc, 44
abs lookupAdapt, 43
abs scalar gasExtractFromLookup, 44
abs vecAddPart, 123
AtmosphereSet1D, 13
AtmosphereSet2D, 13
AtmosphereSet3D, 13
AtmRawRead, 37
CloudboxGetIncoming, 120
CloudboxOff, 18
cloudboxSetManually, 105
cloudboxSetManuallyAltitude, 104

240 INDEX

doit conv flagAbs, 123
doit conv flagAbsBT, 123
doit conv flagLsq, 123
doit i fieldIterate, 121, 123
doit i fieldSetClearsky, 121
doit i fieldSetConst, 121
doit i fieldUpdate1D, 122
doit i fieldUpdateSeq1D, 122
doit i fieldUpdateSeq1DPP, 122
doit i fieldUpdateSeq3D, 124
doit scat fieldCalc, 122
doit scat fieldCalcLimb, 122
doit za grid optCalc, 120
DoitAngularGridsSet, 120, 122
DoitCloudboxFieldPut, 121
DoitInit, 120
DoitScatteringDataPrepare, 121–123
ext matAddPart, 123
iyInterpCloudboxField, 124
opt prop sptFromMonoData, 122
ParticleTypeAdd, 37, 105
ParticleTypeAddAll, 37, 105
pha mat sptFromDataDOITOpt, 122
pha mat sptFromMonoData, 122
pnd fieldCalc, 105
ppath stepGeometric, 25, 53
ppath stepRefractionEuler, 25, 53, 64
ppathCalc, 25, 48, 49, 52
rte agenda, 28
RteCalc, 24
RteEmissionStd, 28
scat data monoCalc, 121, 123
ScatteringDoit, 120
surfaceBlackbody, 78
surfaceCalc, 28
surfaceFlat, 78
surfaceSimple, 78
XxxxxExtractFromXxxxx, 94
ybatchCalc, 93

workspace variables, 7, 145
abs lookup, 43
abs lookup is adapted, 44
abs vec, 123
antenna dim, 22
atmosphere dim, 13
cloudbox limits, 18

cloudbox on, 18
doit i field, 121
doit i field1D spectrum, 121
doit scat field, 121
ext mat, 123
f index, 44
iy, 28
lat grid, 17
lon grid, 17
mblock aa grid, 22, 23
mblock za grid, 22, 23
opt prop spt, 123
p grid, 15, 17
pha mat, 121
pnd field, 105
pnd field raw, 105
ppath, 48, 56
ppath array, 49, 51
ppath step, 48, 52, 56
r geoid, 18, 69
scat aa grid, 120
scat i p, 121
scat za grid, 120
sensor los, 21, 23
sensor pos, 20
sensor response, 22, 24
stokes dim, 19, 28
surface emission, 28, 75
surface los, 28, 75
surface rmatrix, 28, 75
t field, 17
ybatch index, 93
ybatch n, 93
z field, 17
z surface, 18

WSMs, 145
WSVs, 145

zenith, 70
zenith angle, 21

	I Overview
	Introduction
	Temporary internal notes
	Documentation guide
	Background
	What is ARTS
	The scope of ARTS
	Additional tools

	ARTS: concept and the programme
	Main components
	Generic workspace methods
	Agendas
	Practical hints
	Test controlfiles
	Command line parameters
	Help
	Online documentation
	Verbosity levels

	The forward model: concepts, definitions and overview
	The atmosphere
	Atmospheric dimensionality
	Altitude coordinates
	Atmospheric grids and fields
	The geoid and the surface
	The cloud box

	Stokes dimensionality
	Absorption
	Compulsory sensor and data reduction variables
	Sensor position
	Line-of-sight
	Sensor characteristics and data reduction
	Measurement sequences and blocks

	Clear sky radiative transfer
	Calculation procedure
	Propagation paths
	The radiative background
	The agenda for clear sky radiative transfer, rte_agenda
	Surface effects
	Calculation accuracy

	Scattering
	DOIT -- the discrete ordinate iterative module
	MC -- reversed Monte Carlo scattering module

	II Algorithm Descriptions
	Theoretical formalism
	The forward model
	The sensor transfer matrix
	Weighting functions
	Basics
	Transformation between vector spaces

	Description of the atmosphere
	Atmospheric fields
	Gridded Fields

	Gas absorption
	The gas absorption lookup table
	Introduction
	Lookup table concept
	Pressure dependence
	Temperature dependence
	Trace gas concentration dependence

	Implementation
	Lookup table structure
	Workspace variables and methods

	Propagation paths and the geoid
	Implementation files
	Calculation approach
	The propagation path data structure
	Structure of implementation
	Main functions for clear sky paths
	Main functions for propagation path steps

	General comments
	Numerical precision
	Propagation paths and grid positions

	Some basic geometrical relationships for 1D and 2D
	Calculation of geometrical propagations paths
	1D
	2D
	3D

	Refraction with simple Euler scheme
	1D
	2D
	3D

	Geoid ellipsoids and geodetic datums
	Geoid ellipsoids
	Geocentric and geodetic latitudes
	Geodetic datums

	Control file examples

	Surface emission and reflections
	The dielectric constant and the refractive index
	Relating reflectivity and emissivity
	Specular reflections
	Control file examples

	Clear sky radiative transfer
	The vector radiative transfer equation
	Standard algorithm
	Simulation of transmission measurements

	Sensor modeling
	Internal functions
	Weighting
	Summation

	Instrument characteristics
	Gaussian response
	Normalisation

	Sensor response initialisation
	No sensor
	Initialisation

	Antenna response
	Antenna diagram
	Antenna line-of-sight
	1D antenna

	Polarisation and rotation
	Polarisation response
	Rotating sensor

	Mixer and sideband filter response
	Single mixer and sideband filter
	Multiple mixers with single backends
	Conversion of IF to RF

	Backend response
	Control file example

	Batch calculations
	Workspace variables and methods
	Control file examples

	Description of clouds
	Introduction
	Single scattering properties
	Coordinate systems
	Scattering datafile structure
	Definition of particle types
	Macroscopically isotropic and mirror-symmetric scattering media (p20)

	Particle size distributions
	Mono-disperse particle distribution
	Gamma size distribution
	McFarquhar and Heymsfield parametrization

	Implementation
	Work space methods and variables

	Scattering - DOIT module
	The discrete ordinate iterative method
	Radiation field
	Vector radiative transfer equation solution
	Scalar radiative transfer equation solution
	Single scattering approximation

	Sequential update
	Up-looking directions
	Down-looking directions
	Limb directions

	Numerical Issues
	Grid optimization and interpolation
	Zenith angle grid optimization
	Interpolation methods
	Error estimates

	Implementation
	1D control file example
	DOIT frame
	The DOIT main agenda
	Agendas used in doit_i_fieldIterate

	Propagation of the DOIT result towards the sensor
	3D DOIT calculations

	Reversed Monte Carlo Scattering Module : ARTS-MC
	Introduction
	Model
	Algorithm

	Implementation in ARTS: ScatteringMonteCarlo
	Future Plans

	III Implementation Issues
	The art of developing ARTS
	Organization
	The ARTS build system
	Configure options
	Adding directories or files

	Conventions
	Numeric types
	Container types
	Terminology
	Global variables
	Files
	Version numbers
	Header files
	Documentation
	File comment
	Function comment
	Generic multi-line comment
	Generic single-line comment

	Extending ARTS
	How to add a workspace variable
	How to add a workspace variable group
	How to add a workspace method
	How to add a source code file
	How to add a test case

	SVN issues
	How to check out arts
	How to update (if you already have a copy)
	How to commit your changes
	How to cut a release
	How to move your arts working directory

	Debugging (use of assert)

	The workspace
	Implementation files
	Workspace Variables or WSVs
	Workspace Methods or WSMs
	Specific WSMs
	Generic WSMs
	Agenda WSMs

	Agendas
	Introduction

	IV Mathematical functions
	Vectors, matrices, tensors, and arrays
	Implementation files
	Vectors
	Constructing a Vector
	VectorViews
	What you can do with a Vector (or VectorView)
	Resize (only for Vector, not for VectorView!):
	Get the number of elements:
	Sum up all elements:
	Element access:
	Copying Vectors:
	Copying in connection with views:
	Assigning a scalar:
	Mathematical operators:
	Maximum and minimum:
	Scalar product:
	Arbitrary single-argument math functions:

	Matrices
	Constructing a Matrix
	MatrixViews
	What you can do with a Matrix (or MatrixView)
	Resize (only for Matrix, not for MatrixView!):
	Get the number of rows or columns:
	Refer to a row or column:
	Element access:
	Copying Matrices:
	Copying in connection with views:
	Assigning a scalar:
	Mathematical operators:
	Maximum and minimum:
	Arbitrary single-argument math functions:
	Transpose:
	Matrix multiplication:

	Tensors
	Constructing a tensor
	Tensor views
	What you can do with a tensor (or tensor view)
	Resize (only for tensors, not for views):
	Get the extent of the various dimensions:
	Slicing:
	Element access:
	Copying tensors:
	Assigning a scalar:
	Mathematical operators:
	Maximum and minimum:
	Arbitrary single-argument math functions:

	Making things appear larger than they are
	Summary

	Arrays
	Constructing an Array
	What you can do with an Array
	Resize:
	Get the number of elements:
	Element access:
	Copying Arrays:
	Assigning a scalar of the base type:
	Append to the end:

	Sparse matrices
	Constructing a Sparse
	What you can do with a Sparse
	Identity matrix:
	Resize:
	Get the number of rows, columns or non-zero elements:
	Element access:
	Copying Matrices:
	Transpose:
	Matrix multiplication:

	Interpolation
	Implementation files
	Green and blue interpolation
	Grid positions
	Setting up grid position arrays
	Interpolation weights
	Setting up interpolation weight tensors
	Blue interpolation
	Green interpolation

	The actual interpolation
	Blue interpolation
	Green interpolation

	Examples
	A simple example
	A more elaborate example

	Higher order interpolation
	Summary

	Integration functions
	Implementation files
	Trapezoidal Integration
	Solid Angle Integration

	Linear algebra functions
	Implementation files
	Linear Equation Systems
	LU Decomposition
	Forward- and Backsubstitution
	More Applications of the LU Decomposition

	Matrix Exponential Function
	Padé Approximation

	V Theoretical background
	Basic radiative transfer theory
	Basic definitions
	The Stokes parameters
	Single particle scattering
	Definition of the amplitude matrix
	Phase matrix
	Extinction matrix
	Absorption vector
	Optical cross sections

	Particle Ensembles
	Single scattering approximation

	Radiative transfer equation
	Blackbody radiation
	Simple solution without scattering and polarization
	Special solutions

	Polarization and Stokes parameters
	Polarization directions
	Plane monochromatic waves
	Measuring Stokes parameters
	Partial polarization
	Polarization of Radiation in the Atmosphere
	Antenna polarization

	The scattering amplitude matrix

	VI Bibliography and Appendices
	VII Index

