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Abstract

In this paper two algorithms for the solution of nonlinear ill-posed problems with simple bounds on the variab
presented. The proposed algorithms are bound-constraint versions of the iteratively regularized Gauss–Newton
The numerical performances of the algorithms are studied by means of simulations concerning the retrieval of m
concentrations from limb sounding observations. For these examples, the unconstrained algorithm leads to unr
solutions.
 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

One of the most efficient regularization methods
nonlinear ill-posed problems is the iteratively regul
ized Gauss–Newton method. This method can be
garded as a Tikhonov regularization with a varia
regularization parameter. The iteratively regulariz
Gauss–Newton method was first studied by Bakus
skii [1]. Convergence results for solving nonlinear i
posed problems were given by Blaschke et al. [2], H
hage [3] and Deuflhard et al. [4]. The performances
the algorithm on the choice of the regularization m
trices and sequences of regularization parameter
atmospheric remote sensing were discussed by D
et al. [5].

However, in some applications the iteratively reg
larized Gauss–Newton method may lead to unreal
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solutions. This is the case in atmospheric remote s
ing by means of high resolution spectroscopy, wh
the iterative process leads to gas concentrations
negative values. In fact, if a negative solution occu
the forward model used to compute the new iter
fails. In this context, the solution of a bound-constra
inversion problem is justified. In the present pap
we discuss two extensions of the iteratively regu
ized Gauss–Newton algorithm for the solution of no
linear ill-posed problems with simple bounds on t
variables. The benefits of using a bound-constr
algorithm stem from two observations about m
practical problems. Firstly, the restriction on the e
pected size of the variables is frequently encounte
in atmospheric remote sensing. Secondly, even if
bounds are active at the solution, their presence
prevent the function from being evaluated at unreas
able or non-physical points during the iterations.

In Section 2 we describe the basic unconstrai
algorithm for atmospheric remote sensing and out
hts reserved.
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some of the concepts that will be used. The bou
constraint algorithms are discussed in Section 3
Section 4 we illustrate these approaches by calcula
the vertical profiles of molecular concentrations fro
limb sounding observations.

2. Basic unconstrained algorithm for the retrieval
problem

The retrieval problem in atmospheric remote se
ing is to extract vertical profiles of atmospheric st
parameters from spectral radiance measurements
relationship between the atmospheric state para
ters and the spectral radiance is given by the radia
transfer equation. The discrete form of the radiat
transfer equation can be written as

y = F(x), (1)

where the mappingF :Rn → R
m is the radiative trans

fer model,x ∈ R
n is the state vector containing the a

mospheric parameters (temperature or molecular
sity profiles) to be retrieved andy ∈ R

m is the exact
data vector containing the spectral radiances (at a fi
number of typically equidistant wavenumbers) m
sured by a “perfect” instrument. HereRn stands for
then-dimensional real Euclidean space with the us
inner product〈x, y〉 = xTy, while ‖ · ‖ denotes thel2
vector norm and the subordinatedl2 matrix norm. The
width of the grid on which the atmospheric state p
rameters are represented depends on the altitude
olution and representational errors, while the spec
interval is given by the characteristics of the spec
scopic instrument. In our analysis we assume that
exact data are attainable, i.e. that there exists the
act solutionx̂ such thaty = F(x̂). Measurements ar
made to a finite accuracy and in practice only the no
data vectoryδ,

yδ = y + δ, (2)

is available. In the present analysis we conside
semi-stochastic data model in the sense that the e
solutionx̂ is deterministic but the measurement erroδ
is stochastic with zero mean and the covariance ma
Sδ , Sδ = σ 2I , whereI is the identity matrix.

While the forward model maps the state spa
into the measurement space, we are interested in
inverse mapping, or equivalently, in the determinat
-

t

of an appropriate estimate of the exact state ve
x̂. An estimate of the exact solution can be found
minimizing the output least squares function

F(x) = 1
2

∥∥F(x) − yδ
∥∥2 (3)

possibly by an iterative method.
In the framework of the iteratively regularize

Gauss–Newton method one considers the augme
objective function

Fk(x) = 1
2

∥∥r(x)∥∥2

= 1
2

[∥∥F(x)− yδ
∥∥2 + αk

∥∥L(x − xa)
∥∥2]

, (4)

where L is some regularization matrix,(αk) is a
monotonically decreasing sequence andxa is the a
priori state vector, the best beforehand estimate ox̂.
The generalized residual vector

r(x) =
[

F(x) − yδ√
αk L(x − xa)

]

is a mappingr :Rn → R
m+p for L ∈ R

p×n. The new
iterate is given by

xδ
k+1 = xδ

k + pk, (5)

wherepk is the solution of the unconstrained subpro
lem:

min
p∈Rn

(
rT(

xδ
k

)
Jr

(
xδ
k

)
p + 1

2p
TJr

(
xδ
k

)T
Jr

(
xδ
k

)
p
)
, (6)

and Jr(x) = r ′(x) denotes the Jacobian matrix ofr
evaluated atx. The iteration is stopped according
to the discrepancy principle, that is, at the first ind
k∗ = k∗(�) for which∥∥F (

xδ
k∗

) − yδ
∥∥ � τ�<

∥∥F (
xδ
k

) − yδ
∥∥,

0 � k < k∗, (7)

whereτ > 1 and� is an upper bound for the erro
‖δ‖ � �. In practice, this bound can be chosen as
expected value of‖δ‖, i.e., � = √

E{‖δ‖2} = σ
√
m,

whereE is the expected value operator.
The regularization matrixL is typically either the

identity matrix (L = L0 = I ), a discrete approxima
tion to the first (L = L1) or second (L = L2) deriva-
tive operator or some approximation to the a priori
variance matrix [5]. Information about the magnitu
and smoothness of the state vector can be simult
ously taken into account by combining several de
ative orders. The sequence of regularization para
ters (αk) can be constructed by using the noise-le
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criterion or the L-curve criterion for each linear su
problem. The second parameter choice method all
enough regularization to be applied at the beginn
of iterations and then to be gradually decreased.
more details we refer to [5].

The process of finding the new iterate can
summarized as follows:

Compute the Gauss–Newton directionpk by solv-
ing the unconstrained subproblem (6) and ta
xδ
k+1 = xδ

k + pk .

Since the iteratively regularized Gauss–New
method is a version of the Tikhonov regularizati
with variableα, Eriksson [6] computes the new itera
by using a step-length algorithm, i.e.

Compute the Gauss–Newton directionpk by solv-
ing the unconstrained subproblem (6) and de
mine a positive step-lengthak for which it holds
that Fk(x

δ
k + akpk) < Fk(x

δ
k). Takexδ

k+1 = xδ
k +

akpk.

3. Modified bound-constraint algorithms

When the constraints are simple bounds on
variables, so that the minimization problem is

{
minx∈Rn F(x) = 1

2‖F(x) − yδ‖2,

subject to the simple boundsl � x � u,
(8)

it is reasonable to preserve feasibility, i.e. to consi
only iteratesxδ

k that satisfyl � xδ
k � u.

The first algorithm we propose is a simplifie
version of an active-set algorithm for well-pos
problems [7]. In order to retain feasibility of the ne
iterate we impose that the step length does not vio
any bound. The process of computing the new ite
then takes the form:

Compute the Gauss–Newton directionpk by solv-
ing the unconstrained subproblem (6). Computeā,
the maximum non-negative feasible step alongpk ,
i.e. l � xδ

k + apk � u for all a with 0< a � ā. De-
termine a positive step-lengthak for which it holds
thatFk(x

δ
k + akpk) < Fk(x

δ
k) andak � ξ ā, where

ξ < 1. Takexδ
k+1 = xδ

k + akpk .
Certainly it may happen that no such step-len
ak exists; in this caseak is taken asξ ā, even though
ξ ā does not satisfy the criteria usually required
a step length for unconstrained optimization. At
next iteration, the pointxδ

k + ξ āpk can be regarded a
initial guess for the new objective function (4). Th
choiceξ < 1 guarantees that the new iterate is in
interior of the feasible region. In fact the variables
not fixed on their bounds, that is, the variables rem
free during the iterative process. This algorithm w
be referred to as the bound-constraint algorithm A.

The second algorithm relies on the use of a c
lection of optimization routines contained in the pu
lic part of the PORT library. For our purpose we u
the routine DRN2GB which is the double-precisi
version of an algorithm for solving nonlinear lea
squares problems with simple bounds [8]. The al
rithm is a trust-region method with a local activ
set strategy to select the step, while the active se
made afresh every iteration. The routine works by “
verse communication”. With reverse communicat
the caller invokes the minimizing routine with an a
proximate minimization point and the values of t
residual function and of the Jacobian matrix at t
point. The minimizing routine returns a new appro
imate solution at which the user should evaluate
residual function and the Jacobian matrix and call
minimizing routine again. In essence, the method p
videsxk+1 asxk + pk , wherepk is the solution of the
trust region subproblem:




minp∈Rn rT(xk)Jr (xk)p + 1
2p

TG(xk)p

subject to the simple boundsl � x � u

and the trust region constraint‖p‖ � ρk.

(9)

Hereρk is the radius of the trust region andG(xk) is
some approximation to the Hessian ofF computed
at xk . G can be computed in the framework
a Gauss–Newton model asG(xk) = Jr(xk)

TJr(xk),
or in the framework of a Quasi-Newton model
G(xk) = Jr(xk)

TJr(xk) + Sk , whereSk is a secan
approximation to the second-order part of the lea
squares Hessian [9]. The algorithm starts withS0 = 0.
With this choice, the first iteration is equivalent to
iteration of the Gauss–Newton method.

In this context the step of computing the new iter
is:
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Compute the new iteratexδ
k+1 by a single call of the

subroutine DRN2GB.

Since the DRN2GB is invoked a single tim
G(xδ

k ) = Jr(x
δ
k)

TJr(x
δ
k) and the radius of the trus

region is the Gauss–Newton step. If the Gau
Newton step is too long the trust region is shru
repeatedly to obtain an acceptable feasiblexδ

k+1. An
acceptablexδ

k+1 means at least a feasible solution
which the objective functionFk decreases. In contra
to the previous algorithm the variables can be fix
on their bounds during the iterative process. T
algorithm will be referred to as the bound-constra
algorithm B.

The new algorithms maintain the peculiarities
the unconstrained version of the iteratively regulariz
Gauss–Newton method: a descending sequence o
ularization parameters and the use of the discrepa
principle as an a posteriori stopping rule.

4. Numerical simulations

In our numerical simulations we consider the M
chelson Interferometer for Passive Atmosphe
Sounding (MIPAS) that has been designed to mea
the Earth’s atmospheric composition with respect t
large number of species. MIPAS is one of the inst
ments on the ESA’s Environmental Satellite (Envis
which was launched successfully into its orbit on
March 2002. The MIPAS instrument provides info
mation about temperature, ozone (O3), nitrogen fam-
ily (NO2, HNO3, N2O, etc.), dynamic tracers (H2O,
CH4) and other species.
-

In limb sounding the line of sight of a space-bor
instrument is oriented at the Earth’s limb. A seque
of observations with different angles corresponding
different tangent altitudes can be used for the retrie
of gas concentration as a function of altitude. T
geometry of the atmospheric remote sensing by a l
sounding instrument is shown in Fig. 1.

Although the retrieval grid can be chosen indep
dently of the tangent grid a close relation betwe
the resolution of the retrieved profile and the ta
gent altitude spacing is expected. Scanning the
mosphere with smaller altitude steps might impro
the vertical resolution, but due to the finite fie
of view of the instrument the contributions of a
jacent atmospheric layers are more correlated
consequently the Jacobian matrix becomes more
conditioned. An equidistant retrieval grid with a spa
ing of 3 km is considered between 12 km and 42 k
while a grid spacing of 5 km is considered betwe
42 km and 52 km. The tangent grid is assumed to
identical to the retrieval grid. The field of view of th
instrument is a symmetric trapezium with 1.4 km a
2 km base lengths.

In our first example we consider the retrieval
NO2 in the spectral interval between 1600.50 a
1601.40 cm−1. This corresponds to Channel C
the MIPAS instrument. A number of 37 equidista
data points were chosen in this spectral interval.
cause H2O, O2 and CH4 are dominant in the ob
served spectral region, no other gases were con
ered. The exact gas profilêx was taken from the
U.S. standard atmosphere. The a priori and ini
gas profilesxa andxδ

0, respectively, were assumed
be identical and were chosen as a constant pro
i.e. xa = xδ

0 = 0.006 ppmv. For the exact gas profi
Fig. 1. Geometry of atmospheric remote sensing by a limb sounding instrument.
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Fig. 2. Result of NO2 retrieval using the unconstrained algorithm

a contaminated spectrum was generated. The noδ
was described by a Gaussian probability distribut
with zero mean and covariance matrixSδ = σ 2I . We
chooseσ = 4 nW/(cm2 sr cm−1). In Fig. 2 the inver-
sion results of the unconstrained algorithm are plot
The profiles correspond to theL0 andL1 regulariza-
tion matrices. In both situations the gas concentra
has negative values. Note that the unconstrained
gorithm is stopped as soon as negative solutions
cur. The results in Fig. 3 are obtained by using
bound-constraint algorithms. For the bound-constr
algorithm A we imposedx � l, while for the bound-
constraint algorithm B we imposedl � x � u, where
l = 0.0001xa andu = 100xa. Both algorithms lead to
realistic solutions with comparable accuracy. The
ative errorsε = ‖x̂ − xδ

k∗‖/‖x̂‖ decrease from 57 t
10% for theL0 regularization matrix and from 57 t
6% for theL1 regularization matrix.

Next we consider the retrieval of N2O. For this
simulation the intensity spectrum between 1270.
and 1272.025 cm−1 was analyzed. This spectral in
terval corresponds to Channel B of the MIPAS
strument. The number of equidistant data points
each spectrum was 49. H2O, CH4 and HOCl were
considered as active gases. The exact gas profix̂

corresponds to the U.S. standard atmosphere, w
the a priori and initial gas profiles were chosen
xa = xδ

0 = 0.15 ppmv. The standard deviation of th
added noise wasσ = 12 nW/(cm2 sr cm−1). In Figs. 4
and 5 we plot the inversion results obtained by
ing the unconstrained and the bound-constraint a
rithms. If no constraints on the variables are impos
(a)

(b)

Fig. 3. Result of NO2 retrieval using: (a) the bound-constrai
algorithm A and (b) the bound-constraint algorithm B.

Fig. 4. Result of N2O retrieval using the unconstrained algorithm
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(a) (b)

Fig. 5. Result of N2O retrieval using: (a) the bound-constraint algorithm A and (b) the bound-constraint algorithm B.
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Table 1
History of regularization parametersαk , relative residuals
F(xδ

k
)/(mσ2) and relative errorsεk for the retrieval of N2O using

the bound-constraint algorithm B with theL1 regularization matrix

k αk F(xδ
k
)/(mσ2) εk

0 7.34 59.5752 59.90
1 7.09 16.1443 17.19
2 6.64 3.7312 14.46
3 6.27 0.6813 8.99
4 5.98 0.5524 7.10
5 5.56 0.5130 6.30
6 5.07 0.5042 5.806
7 5.02 0.5037 5.803
8 – 0.5035 5.802

negative solutions occur. The bound-constraint al
rithms have similar inversion performances and le
to solutions with acceptable accuracy. The relative
rors for the bound-constraint algorithms decrease f
60 to 11% for theL0 regularization matrix and from
60 to 6% for theL1 regularization matrix. Table 1
shows the history of regularization parametersαk , rel-
ative residualsF(xδ

k)/(mσ 2) and relative errorsεk for
the bound-constraint algorithm B with theL1 regular-
ization matrix. These results serve as an evidence
the convergence of the sequence of regularization
rameters and the convergence of the relative resi
to 0.5 (cf. Eqs. (3) and (7)).

We want to point out that we can also prevent
occurrence of negative solutions by an adequate ch
of the initial guess. If the initial guess is “sufficien
ly” close to the exact solution, the unconstrained
gorithm may lead to correct solutions. However, t
strategy is time consuming and restricts the capa
ities of the unconstrained algorithm to handle un
pected situations. This aspect is especially impor
in case of automated operational data processin
large amounts of satellite data.

Our numerical analysis indicates that the bou
constraint algorithm B is more time consuming th
the bound-constraint algorithm A. The explanat
lies in the fact that the model and the trust rad
selection requires more function evaluations than
step-length procedure.

5. Conclusions

In the present paper two implementations of the
eratively regularized Gauss–Newton algorithm for
solution of bound-constraint problems arising in
mote sensing are discussed. The first algorithm u
a “constrained” step-length procedure to compute
new iterate. The second algorithm uses the optim
tion routines DRN2GB from the PORT library to min
imize the quadratic function subject to simple boun
on the variables. In order to cope with the ill-posedn
of the problem, a decreasing sequence of regula
tion parameters and the discrepancy principle as
a posteriori stopping rule are used. Whether the p
posed algorithms are regularization methods in
sense of [10] remains an open question. However
inversion performances of the algorithms are acc
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able, at least for the examples of gas concentration
trieval considered in Section 4. The retrieval of N2O
and NO2 from limb sounding observations are su
ficiently accurate for an initial guess lying far aw
from the exact solution. These encouraging res
suggest that the present approach is suitable for in
sion of the radiative transfer equation to analyze li
sounding measurements.
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