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Abstract

In this paper we present an inversion algorithm for nonlinear ill-posed problems arising in atmospheric remote sensing. The
proposed method is the iteratively regularized Gauss–Newton method. The dependence of the performance and behaviour of
the algorithm on the choice of the regularization matrices and sequences of regularization parameters is studied by means of
simulations. A method for improving the accuracy of the solution when the identity matrix is used as regularization matrix
is also discussed. Results are presented for atmospheric temperature retrievals from a far infrared spectrum observed by an
airborne uplooking heterodyne instrument.
 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The Bayesian approach has a dominating role in atmospheric remote sensing where it is well known as “optimal
estimation” [1]. A priori information about the atmospheric state is encapsulated in the form of probability
distributions, which are independent of the observed data. When such distributions are combined with probabilistic
information about data uncertainties (both random and theoretical) it is possible to derive a final (a posteriori)
probability distribution assimilating both types of information. However, the construction of the a priori probability
distribution is a controversial matter when statistical information about atmospheric variability is poor. In this
case regularization methods accounting for deterministic information about the atmospheric state parameters are a
pleasant alternative.

One of the best understood regularization methods for nonlinear ill-posed problems is the method of Tikhonov
regularization [2–5]. O’Sullivan and Wahba [5] used Tikhonov regularization with an extended form of the
generalized cross validation for vertical temperature retrieval. Besides generalized cross validation technique other
a posteriori regularization parameter choice methods are the discrepancy principle [6] and the nonlinear L-curve
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criterion [7]. It must be emphasized that Tikhonov regularization is time consuming, because the selection of the
regularization parameter requires the solution of several nonlinear minimization subproblems. A ‘cheap’ version
of Tikhonov regularization for nonlinear problems is the iteratively regularized Gauss–Newton method introduced
by Bakushinskii [8]. This method can be regarded as a Tikhonov regularization with a variable regularization
parameter. The mathematical foundations of the method were discussed by Blaschke et al. [9], Hohage [10], and
Deuflhard et al. [11]. In atmospheric inversion this method was used by Tautenhahn [12] for temperature retrieval.
Tautenhahn used the identity matrix as regularization matrix and a parameter choice method based on the noise
level.

This paper has several aims: to present the peculiarities of an iteratively regularized Gauss–Newton algorithm
and to analyze the influence of different regularization matrices and sequences of regularization parameters on the
inversion performances of a vertical temperature profile. From a practical point of view we are also interested in
the feasibility of temperature retrieval by airborne far infrared atmospheric spectroscopy.

2. Formulation of the discrete problem

Atmospheric remote sensing in the microwave and infrared spectral regions can be done by measurements of the
thermal emission of the atmosphere. From a computational point of view the basic problem is the inversion of the
radiative transfer equation [13]. For an arbitrary slant path, the intensity (radiance)I at wavenumberν received by
an instrument at positions = 0 is given by (neglecting scattering and assuming local thermodynamical equilibrium)

I (ν) = Ib(ν)T (ν, sb)−
sb∫

0

B
(
ν,T (s′)

)∂T (ν, s′)
∂s′ ds′, (1)

whereB is the Planck function at temperatureT , and Ib is the background contribution at positionsb. The
monochromatic transmissionT is given according to Beer’s law by

T (ν, s) = exp

[
−

s∫
0

∑
g

kg
(
ν,p(s′), T (s′)

)
ng(s

′)ds′
]
, (2)

wherep is the atmospheric pressure,ng is the number density of moleculeg andkg is its absorption cross section.
In general, the absorption cross section is obtained by summing over the contributions from many lines. For an
individual line the spectral absorption cross section is the product of the temperature-dependent line strength and
a normalized line shape function describing the broadening mechanism. For the infrared and under atmospheric
conditions, the combined effect of pressure broadening (corresponding to a Lorentzian line shape) and Doppler
broadening (corresponding to a Gaussian line shape) can be represented by a Voigt line profile. The instrumental
response is taken into account by convolution of the monochromatic intensity spectrum (1) with an instrumental
line shape function, while a further convolution will be required to account for the finite field of view.

Spectroscopic instruments working in the infrared spectral region measure the intensity (spectral radiance) at a
finite number of typically equidistant wavenumbersνi , i = 1, . . . ,m (equivalent to frequencies or wavelengths).
Consequently a collocation method, with collocation points given by the spectral characteristics of the instrument,
is used to discretize the integral equation (1) with respect to the left-hand side. In addition, a quadrature approach
is employed to approximate the integrals in Eqs. (1) and (2). As there is a unique relation between the path
variables and the altitudeh, it is convenient to consider the temperatureT or the molecular density profilesng at
altitudeshj , j = 1, . . . , n, as unknowns of the inverse problem. Note that it is frequently justified to neglect the
horizontal (latitudinal and longitudinal) variability of the atmospheric parameters and to retrieve the temperature
or molecular density profiles as a function of altitude. In practice, the retrieval gridhj , j = 1, . . . , n, is chosen as
the altitude grid specified in the atmospheric profiles data base [14]. The data corresponding to the retrieval grid
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are interpolated to the integration grid by using some interpolation methods, as for instance the piecewise cubic
Hermite interpolation. In our forward model a trapezoidal quadrature scheme, the method of overlapping parabolas
(essentially an optimized version of the AVINT routine from the SLATEC library [15]) and a piecewise cubic
Hermite quadrature [16] are implemented. For details concerning the numerical performances of the quadrature
schemes we refer to Schreier and Schimpf [17].

The discretization process leads to the nonlinear system of equation

z = G(x), (3)

where the mappingG :Rn → Rm representing the forward model is assumed to be continuously differentiable,
z ∈ Rm is the exact data vector (intensity spectrum) andx ∈ Rn is the state vector containing the atmospheric
parameters (temperature or molecular density profiles) to be retrieved. HereRn stands for then-dimensional
real Euclidean space with the usual inner product〈x, y〉 = xTy, while ‖ · ‖2 denotes thel2 vector norm and the
subordinatedl2 matrix norm. In our analysis we assume that the exact data are attainable, i.e. that there exists the
exact solution̂x ∈ D(G) ⊆ Rn such thatz = G(x̂).

Measurements are made to a finite accuracy and in practice only the noise contaminated data vectorzε,

zε = z + ε, (4)

is available. In the Bayesian approach the state vector is considered to be a random vector and the probability
distribution of the state vector that is consistent with the data and the a priori information is computed. In our
approach we consider a semi-stochastic data model in the sense that the exact solutionx̂ is deterministic but the
measurement errorε is stochastic with zero mean and the covariance matrixSε , Sε = σ 2

ε Ŝε, wherêSε is a symmetric
and positive definite matrix (usually a diagonal matrix). The data model is:

y = F(x̂) (5)

yδ = y + δ, (6)

where the new variables arey = Ŝ
−1/2
ε z, F = Ŝ

−1/2
ε G, yδ = Ŝ

−1/2
ε zδ, δ = Ŝ

−1/2
ε ε, andŜ−1/2

ε is the inverse of the
symmetric square root of̂Sε . The measurement errorδ has zero mean and the covariance matrixSδ = E{δ · δT} =
σ 2
ε I , whereE is the expected value operator.

A discretization scheme consisting in a collocation method and an approximation technique with basis functions
of small support, e.g., B-splines, was used by O’Sullivan [5] and Wahba [18]. In this case the regularization term is
a quadratic functional of atmospheric parameters. However, due to the complexity of the forward model we prefer
to use the quadrature approach. This strategy allows us to implement various regularization matrices in a simple
way.

3. Iteratively regularized Gauss–Newton method for the discrete problem

The goal of our analysis is to find the most featureless state vectorxδ consistent with the data and whatever
other deterministic information are available. An estimatexδ can be found by minimizing the so-called output least
squares function

F(x)= 1
2

∥∥F(x)− yδ
∥∥2

2 (7)

possibly by an iterative method. The Gauss–Newton method for the minimization of (7) leads to the formal iterative
solution

xδ
k+1 = xδ

k − (
F ′(xδ

k )
TF ′(xδ

k)
)−1

F ′(xδ
k )

T(
F(xδ

k)− yδ
)
, (8)

whereF ′(x) ∈ Rm×n denotes the Jacobian matrix evaluated atx.
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In mathematical models for inverse problems, whereF :D(F) ⊆ X → Y is a smoothing operator between
the Hilbert spacesX andY , the generalized inverse ofF ′∗F ′ (whereF ′∗ denotes the adjoint ofF ′) is usually
unbounded, so that each iteration would be unstable even if it were well defined. Hence, the termF ′∗F ′ has to
be replaced by an operator with a bounded inverse to ensure that each iteration step is well defined. In fact, a
priori information like measures of solution magnitude and smoothness can be incorporated in order to stabilize
the iterative process. Due to the inherent instability of ill-posed problems, an iteration method has to be stopped
appropriately to guarantee stability of the iterates. These requirements can be achieved by the iteratively regularized
Gauss–Newton method. In the discrete case this method uses the stabilization term(

αkL
TL + F ′(xδ

k)
TF ′(xδ

k )
)−1

αkL
TL

(
xδ
k − xa

)
leading to the iterative solution

xδ
k+1 = xδ

k − (
αkL

TL + F ′(xδ
k)

TF ′(xδ
k)

)−1[
F ′(xδ

k)
T(
F(xδ

k )− yδ
) + αkL

TL(xδ
k − xa)

]
, (9)

whereL is some regularization matrix,(αk) is a monotonically decreasing sequence satisfying

αk > 0, 1 � αk

αk+1
� c, (10)

and xa is the a priori state vector, the best beforehand estimate ofx̂. Note thatxδ
k+1 has the variational

characterization

F l
k(x) = ∥∥F(xδ

k )− yδ + F ′(xδ
k )(x − xδ

k)
∥∥2

2 + αk

∥∥L(x − xa)
∥∥2

2. (11)

The a priori state vector is assumed to satisfy a source condition of the formxa − x̂ = f (F ′(x̂)TF ′(x̂))q ,
where‖q‖2 is sufficiently small andf is a continuous function satisfyingf (0) = 0. Bakushinskii [8] proved
convergence of the iteratively regularized Gauss–Newton method under source conditions withf of the form
f (t) = t . This approach was extended by Blaschke et al. [9] to source condition of Hölder-typef (t) = tν , ν � 0,
and by Hohage [10] to logarithmic source condition of the formf (t) = [ln(et0/t)]−p with 0< t � t0 andp > 0.
Moreover, they established convergence rates using the discrepancy principle as an a posteriori stopping rule, i.e.
the iteration is stopped at the first indexk∗ = k∗(+) for which∥∥F(xδ

k∗)− yδ
∥∥

2 � τ+<
∥∥F(xδ

k)− yδ
∥∥

2, 0 � k < k∗, (12)

where τ > 1 and + is an upper bound for the error,‖δ‖2 � +. To prove results about convergence rates
Blaschke et al. [9] and Hohage [10] had to assume some nonlinearity conditions on the mappingF . However,
Deuflhard et al. [11] had shown that convergence rate results can be obtained without assuming logarithmic or
Hölder-type source conditions. In this context the authors proved that under a stronger nonlinearity condition (the
Newton–Mysovskii condition) the estimate∥∥xδ

k − x̂
∥∥

2 = O
(
g(αk)

)
, 0 � k � k∗(+),

holds. Hereg : [0,∞) → R is a monotonically increasing, continuous function satisfyingg(0) = 0 and some
additional closeness conditions. This result together with the asymptotic estimate of the regularization parameter
αk∗(+), i.e. αk∗(+) = O(+) [10], complete the convergence analysis of the iteratively regularized Gauss–Newton
method. Although these results were derived for the identity operator, they are valid in the discrete case for an
arbitrary regularization matrix (with minor changes of the source and closeness conditions).

4. Selection of regularization matrix and regularization parameters

For practical applications we have to choose the regularization matrix and to construct a monotonically
decreasing sequence of regularization parameters.L is typically either the identity matrix (L = L0 = I ), a diagonal
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weighting matrix or a discrete approximation of a derivative operator. For example, for an equidistant discretization,
the matrices

L1 =
1 −1

. . .
. . .

1 −1

 ∈ R(n−1)×n (13)

and

L2 =
1 2 −1

. . .
. . .

. . .

1 2 −1

 ∈ R(n−2)×n (14)

are scaled approximations to the first and second derivative operatorsL1 andL2, whereL1f = f ′ andL2f =
f ′′ [19].

If we have some knowledge about the magnitude of the state vector and we want to constraint the solution to be
smooth, we can combine several derivative orders (Sobolev norm) and determine the regularization matrix by the
Cholesky factorization [20]

LTL =
2∑

k=0

wkL
T
k Lk, (15)

wherewk � 0 are some weighting factors such that
∑2

k=0wk = 1. The weighting factors are chosen in accordance
with the peculiarities of the solution. For ill-conditioned linear systems of equations Brezinski et al. [21] recently
proposed an automatic choice method for the weighting factorswk . The regularization matrix can also be
constructed by means of statistical information, that is,L can be some approximation of an a priori covariance
matrix. For example, in the case of an a priori symmetric and positive definite covariance matrixSa = σ 2

a Ŝa with
unknown scale factorσa, we can determineL by using the Cholesky factorizationLTL = Ŝ−1

a . If the variances
σaυi of the a priori profile are known in the sense thatυi are known (i.e. the variances are known except for a
multiplicative constantσa), we can express the matrix̂Sa as:[

Ŝa
]
ij

= υiυj exp

(
−|hi − hj |

lcor

)
, i, j = 1, . . . , n, (16)

wherelcor is a length determining the correlation between the parameters at different altitudeshi . In the case of an
equidistant altitude grid+h = hi − hi−1 andυi = υ for all i, we use the expression of̂S−1

a given by Steck and
von Clarmann [22] to representL as

L = 1

υ
√

1− exp(−2a)



1 −exp(−a) 0 . . . 0 0
0 1 −exp(−a) . . . 0 0
0 0 1 . . . 0 0
. . . . . . . . . . . . . . . . . .

0 0 0 . . . 1 −exp(−a)

0 0 0 . . . 0
√

1− exp(−2a)

 (17)

wherea = �h/lcor. From a deterministic point of view we see thatL acts like a smoothing matrix similar to the
discrete approximation to the first derivative operatorL1. In fact, for lcor → 0,L → L0, while for lcor → ∞, LTL

behaves likeLT
1L1. Note that if the iterative process is stopped according to the discrepancy principle and we set

σa = σε/
√
αk∗(+) we are not allowed to interpretSa = σ 2

a Ŝa as the a priori covariance matrix. In this caseSa will
depend on the statistics of the data, and the whole reason for trying to solve the problem from a Bayesian point of
view is to have the ability to incorporate probabilistic data-independent information about the solution [23].
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We turn now to the problem of regularization parameter selection. The new iteratexδ
k+1 minimizes the objective

functionF l
k, cf. Eq. (11), which may be written as

F l
k(x) = ∥∥F ′(xδ

k)x − [
F ′(xδ

k )x̂ + δ +R(xδ
k , x̂)

]∥∥2
2 + αk

∥∥L(x − xa)
∥∥2

2, (18)

where

R
(
xδ
k , x̂

) ≡ F(x̂)− F
(
xδ
k

) − F ′(xδ
k

)(
x̂ − xδ

k

)
denotes the Taylor remainder for the linearization aroundxδ

k . Let us denote byαLC
k the regularization parameter for

the linear subproblem chosen by the L-curve criterion [19], and let us assume that the singular values of the matrix
F ′(xδ

k) do not vary significantly during the iteration process. For growingk-values,δ + R(xδ
k , x̂) decreases, and

consequentlyαLC
k decreases. This suggests thatαk may be chosen asαLC

k . However, numerical experiments show
that a brutal use ofαLC

k may lead to oscillating sequences ofαk-values. A heuristic formula leading to a decreasing
sequence of(αk) was proposed by Eriksson [7]:

αk = βαLC
k + (1− β)αk−1, 0 � β � 1, (19)

where the parameterβ can be used to control the decay rate of the sequence(αk). This regularization parameter
choice method will be referred to as the weighted L-curve criterion. Another selection criterion was proposed by
Tautenhahn [3,12]:

αk = +

‖F(xδ
k )− yδ‖2

αk−1. (20)

In contrast to criterion (19) this strategy allows the regularization parameters to decrease very fast at the beginning
of iterations. This selection criterion will be referred to as the noise level criterion.

5. Iteratively regularized Gauss–Newton algorithm

A numerical robust method for computing the new iteratexδ
k+1 and the regularization parameterαLC

k relies
on the generalized singular value decomposition (GSVD) of the matrix pair(K, L), whereK = F ′(xδ

k) [19]. We
recall that ifK ∈ Rm×n, L ∈ Rp×n andm � n � p, the GSVD of the matrix pair(K, L) is given by

K = USX−1 and L = VMX−1,

whereU ∈ Rm×m andV ∈ Rp×p are unitary matrices,X ∈ Rn×n is a nonsingular matrix,S ∈ Rm×n andM ∈ Rp×n

consist of diagonal matrices,

S =
[diag(µi) 0

0 In−p

0 0

]
, M = [

diag(ηi) 0
]
,

diag(µi),diag(ηi) ∈ Rp×p andγi = µi/ηi, i = 1,2, . . . , p, are the generalized singular values. The new iterate is
found by first computing the minimizer of the objective functionF l

k, written in compact form as

F l
k(r) =

∥∥∥∥(
K√
αkL

)
r −

(
g

0

)∥∥∥∥2

2
, (21)

that is

rk+1 =
p∑

i=1

γ 2
i

γ 2
i + αk

uT
i g

µi
xi +

n∑
i=p+1

(
uT
i g

)
xi, (22)
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where g = K(xδ
k − xa) − (F (xδ

k) − yδ) and ui and xi denote the columns ofU and X, respectively,U =
[u1, u2, . . . , um] andX = [x1, x2, . . . , xn], and then by making a back-transformationxδ

k+1 = rk+1 + xa.
The regularization parameterαk is computed according to the weighted L-curve criterion (19) or the noise

level criterion (20). In the first case, the L-curve criterion for the linear subproblem (21) is used to select the
regularization parameterαLC

k . We recall that the L-curve is a double logarithmic plot of the residual norm
‖Krα − g‖2 versus the constraint norm‖Lrα‖2 with the regularization parameterα as the parameter. This curve
has a typically L-shaped corner. According to Hansen [19], the corner of the L-curve, i.e. the point with maximum
curvature, appears for regularization parameters close to the optimal parameterαLC that balances the regularization
errors and the perturbation errors. Because the residual norm and the constraint norm are given by simple analytical
formulas [24] we use Brent’s function minimization routineFMIN [16] to compute the maximum of the curvature.

The iteratively regularized Gauss–Newton algorithm can be summarized as follows:

0. Initialization: Choose the regularization matrixL. Choosexa, xδ
0 andα−1 (usually, but not necessary,xa = xδ

0).
Setk = 0.

1. ComputeF(xδ
k), K = F ′(xδ

k ) and the GSVD of(K, L).

2. DetermineαLC
k and computeαk according to the weighted L-curve criterion (19) or the noise level criterion

(20).
3. Compute the new iteratexδ

k+1 = rk+1 + xa using (22).
4. If the discrepancy principle (12) is fulfilled then stop the iteration, else setk = k + 1 and go to step 1.

Since the iteratively regularized Gauss–Newton method is a version of the Tikhonov regularization with variable
α, Eriksson [7] used at step 3 a line search algorithm. In this case, step 3 can be reformulated as follows:

3′. Compute the Gauss–Newton directionpk = rk+1− (xδ
k −xa), determine the step-lengthak so that the objective

function

Fk(x) = 1
2

[∥∥F(x)− yδ
∥∥2

2 + αk

∥∥L(x − xa)
∥∥2

2

]
(23)

is sufficiently reduced and takexδ
k+1 = xδ

k + akpk.

The discrepancy principle is frequently used for nonlinear ill-posed problems. This criterion requires the
knowledge of an upper bound for the error. In practice, this bound can be chosen as the expected value of‖δ‖2,

i.e. + =
√
E{‖δ‖2

2} = σε
√
m. If we do not have information about the noise level, Tikhonov regularization with

the generalized cross validation or the nonlinear L-curve criterion can be used. Note that when stability was
required, stopping criteria like the convergence of the iterates or of the linearization error were used by Schimpf and
Schreier [25] and Gonzáles and Vélez-Reyes [26]. Although the choice of stopping criteria may not be a delicate
question as far as stability is concerned, it is essential for computational expense.

6. Numerical simulations

The motivation for these simulations has been twofold: to study the feasibility of temperature retrieval from
spectra recorded by the 2.5 THz OH Measurement Airborne Sounder (THOMAS) and to analyze the behaviour
of the solution for different regularization matrices and sequences of regularization parameters. THOMAS is a
high resolution heterodyne spectrometer measuring the atmospheric thermal emission in the far infrared. The
dominant spectral signatures in the observed spectral region are due to the hydroxyl radical (a rotational line
triplet at 83.869 cm−1), water vapor (nb. the wing of a strong line at about 84.456 cm−1), and ozone.

Ideally the vertical distribution of OH is the only unknown of the retrieval problem. However, analysis
of the spectra recorded during the second CRISTA/MAHRSI validation campaign 1997 (Cryogenic Infrared
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Spectrometers and Telescope for the Atmosphere/Middle Atmosphere High Resolution Spectrograph Investigation)
[27] has indicated the need to consider H2O as unknown, too. Although temperature has a significant impact on the
spectrum, it is usually assumed to be known (the retrievals reported by Englert et al. [27] used preliminary CRISTA
data). Clearly the retrieval of actual temperature profiles could lead to an improved OH analysis.

The synthetic measurement spectrum used in this numerical study largely resembled typical THOMAS
observations made aboard the DLR research aircraft FALCON. An observer altitude of 12 km and a pointing
angle of 80◦ from zenith has been assumed. A radiance spectrum (1) ofm = 200 data points between 83.84 and
83.88 cm−1 was simulated using a line-by-line atmospheric radiative transfer code [17]. The exact atmospheric
temperature profilêx as well as pressure, OH, H2O, and O3 profiles were taken from the U.S. standard atmosphere.
Noise ε described by a Gaussian probability distribution with zero mean and covariance matrixSε = σ 2

ε I was
added to the simulated spectrum. The signal-to-noise ratio, defined asSNR = ‖yδ‖2/(σε

√
m), was chosen as 100.

Since we are not interested in a statistical analysis we do not perform a Monte Carlo experiment and consider a
single observation.

The a priori and initial profile of temperaturexa and xδ
0, respectively, were assumed to be identical and

were chosen as a scaled version of the exact profile, i.e.xa = xδ
0 = 0.85x̂. A vertical grid with 2.5 km spacing

was selected. Thus the unknown temperature profile was represented by a vector of 20 elements in the altitude
regime 12.5–60 km.

As indicated by Eqs. (1) and (2) the inverse problem of temperature estimation from an infrared intensity
spectrum is nonlinear. Table 1, which serves to indicate the nonlinearity of the problem, shows the one-norm
‖ · ‖1, the Euclidean norm‖ · ‖2 and the infinity norm‖ · ‖∞ of the JacobianK at two different states, one of which
corresponds to the exact solutionx̂, the other to the initial guessxδ

0.
The retrieved profiles for different regularization matrices are shown in Figs. 1 and 2. In Table 2 the

corresponding relative errorsε = ‖x̂ − xδ
k∗‖2/‖x̂‖2 are listed. The sequences of regularization parameters were

chosen according to the weighted L-curve criterion (19). The retrieved profiles in Fig. 1a, b show oscillations,
that are more pronounced if the contribution of the identity matrixL0 = I to the global regularization matrixL
increases. This behaviour is a consequence of the smoothness of the exact solution, which requires the use of the
L1 or L2 regularization matrices. The results in Fig. 2 are in agreement with the peculiarities of the regularization
matrix described by exponential decay aslcor increases. By increasing the correlation length, the regularization

Table 1
One-norm, Euclidean norm and infinity norm
of the JacobianK at xδ0 andx̂

Matrix norms xδ0 x̂

‖K‖1 4988.47 4505.90

‖K‖2 420.26 351.15

‖K‖∞ 107.72 57.32

Table 2
Relative errorsε for the regularization matrix combining several derivative orders or described by
exponential decay, cf. Eqs. (15) and (16)

Combination of derivatives Exponential decay
(w0,w1,w2)

T lcor
Regularization matrix

1.0 0.5 0.0 0.5 0.0
0.0 0.0 0.0 0.5 1.0 5 km 20 km 40 km
0.0 0.5 1.0 0.0 0.0

Relative error[%] 3.21 1.64 0.50 1.46 0.41 1.42 0.90 0.23
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(a)

(b)

Fig. 1. Results of temperature retrieval for a regularization matrix combining several derivative orders with: (a)(w0,w1,w2) = (0.0,0.0,1.0),
(w0,w1,w2) = (0.5,0.0,0.5), and (w0,w1,w2) = (1.0,0.0,0.0), (b) (w0,w1,w2) = (0.0,1.0,0.0), (w0,w1,w2) = (0.5,0.5,0.0), and
(w0,w1,w2) = (1.0,0.0,0.0).

matrix behaves like the discrete approximation to the first derivative operator and consequently the relative errors
decrease. The best solution was obtained in the caselcor = 40 km.

A technique for improving the inversion performance in the caseL = L0 can be given as follows:

1. Let xδ
k∗be the solution obtained by using the discrepancy principle. Smooth the solution by using Tikhonov

regularization, that is, determinexδ
smoothby minimizing the objective function

F(x)= ∥∥x − xδ
k∗

∥∥2
2 + α‖L2x‖2

2, (24)

whereα is chosen according to the L-curve criterion.
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Fig. 2. Result of temperature retrieval for a regularization matrix described by exponential decay with:lcor = 5 km, lcor = 20 km and
lcor = 40 km.

Fig. 3. Result of temperature retrieval using the smoothing procedure.

2. Setx0 = xa = xδ
smoothand restart the iteratively regularized Gauss–Newton algorithm.

In Fig. 3 we show the solution that was obtained by restarting the algorithm. The relative error decreases from
3.21 to 1.53%. Note that this technique can also be used in the Levenberg–Marquardt method, where at each
iteration only the magnitude of the solution is controlled.

Next we consider the regularization matrices (15) with(w0,w1,w2) = (0.0,0.0,1.0), (w0,w1,w2) =
(0.5,0.0,0.5), and(w0,w1,w2) = (1.0,0.0,0.0) and select the sequence of regularization parameters according
to weighted L-curve criterion (19) and noise level criterion (20). For the first selection criterion we chooseβ = 0.2,
and this choice leads to a slowly decreasing sequence of regularization parameters. The histories of regularization
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Table 3
Histories of regularization parametersαk , relative residualsF(xδ

k
)/(mσ2

ε ) and relative errorsεk for: (a) (w0, w1, w2) =
(0.0, 0.0, 1.0), (b) (w0, w1,w2) = (0.5,0.0,0.5) and (c) (w0,w1,w2) = (1.0,0.0,0.0). The columns 2, 3 and 4
correspond to the weighted L-curve criterion, while the columns 5, 6 and 7 correspond to the noise level criterion. The
smallest generalized singular values of(K,L) are displayed in column 8

(a)

k αk F(xδ
k
)/(mσ2

ε ) εk αk F(xδ
k
)/(mσ2

ε ) εk γmin
k

0 186.35 211.51 0.15 186.35 211.51 0.15 3.56e−2
1 149.19 3.18 6.75e−2 26.03 3.18 6.75e−2 3.12e−2
2 119.47 1.09 1.43e−2 10.50 1.24 1.62e−2 3.43e−2
3 – 0.45 5.05e−3 – 0.46 7.54e−3 –

(b)

0 11.56 211.51 0.15 11.56 211.51 0.15 4.91e−2
1 10.19 7.78 6.56e−2 0.74 7.78 6.56e−2 5.07e−2
2 9.67 3.26 2.64e−2 7.02e−2 5.27 0.10 6.03e−2
3 8.58 1.22 1.65e−2 – negative solution – –
4 – 0.45 1.64e−2 – – – –

(c)

0 8.21 211.51 0.15 8.21 211.51 0.15 0.13
1 7.21 40.68 8.21e−2 0.10 40.68 8.21e−2 0.12
2 6.49 24.61 3.83e−2 – negative solution – –
3 5.87 1.77 2.88e−2 – – – –
4 5.32 0.61 3.02e−2 – – – –
5 – 0.47 3.12e−2 – – – –

parametersαk , relative residualsF(xδ
k)/(mσ 2

ε ) and relative errorsεk are illustrated in Table 3. The sequences
of regularization parameters given by the noise level criterion decrease faster than the sequences given by the
weighted L-curve criterion. In the case(w0,w1,w2) = (0.0,0.0,1.0) both selection criteria lead to comparable
solutions. In the next cases, the noise level criteria leads to negative solutions with large relative errors. It appears
that the solution deteriorates significantly when the regularization parameter becomes comparable to the smallest
generalized singular values of(K,L). Therefore, we can conclude that allowing the regularization parameter
to decrease too fast will result in convergence toward a solution with large relative error with respect to the
exact solution. A more suitable strategy is to start with a rather largeα and then to decreaseα gradually in
a safe way.

7. Conclusions

An iteratively regularized Gauss–Newton algorithm for atmospheric retrieval is presented. At each iteration the
new iterate and the regularization parameter are computed by using the generalized singular value decomposition
of the Jacobian matrix and the regularization matrix.

Our analysis is focused on the choice of the regularization matrix and the sequence of regularization parameters.
The combination of several derivative orders into a single regularization matrix as well as the use of a regularization
matrix with an exponential decay gives more flexibility to the algorithm and offers the possibility to control
simultaneously the magnitude and the smoothness of the solution. Our numerical simulations demonstrate that
a regularization matrix with an exponential decay is suitable for temperature retrieval, at least for the particular
example considered in Section 6. An appropriate strategy for choosing the regularization parameter relies on
the use of the L-curve criterion for each linear subproblem. This technique allows enough regularization to be
applied at the beginning of iterations and then to be gradually decreased. The numerical examples indicate that
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an algorithm based on the weighted L-curve criterion is more efficient than one based on the noise level criterion,
even though its more time consuming. Note that the forward calculations are the most time-consuming part of the
retrieval.

A technique for improving the accuracy of the solution in the caseL = I is also presented. This method consists
in a smoothing procedure based on Tikhonov regularization and a restarted iteratively regularized Gauss–Newton
algorithm.

In summary, the iteratively regularized Gauss–Newton method using a regularization matrix with an exponential
decay and a parameter choice strategy based on the weighted L-curve criterion clearly emerges as a valuable
technique for atmospheric profile retrieval.

Acknowledgement

The authors would like to thank Dr. Birger Schimpf for numerous valuable discussions and suggestions during
the preparation of this work.

References

[1] C.D. Rodgers, Inverse Methods for Atmospheric Sounding: Theory and Practise, World Scientific, Singapore, 2000.
[2] H.W. Engl, M. Hanke, A. Neubauer, Regularization of Inverse Problems, Kluwer, Dordrecht, NL, 1996.
[3] U. Tautenhahn, Error estimates for regularized solutions of nonlinear ill-posed problems, Inverse Problems 10 (1994) 485–500.
[4] A. Neubauer, Tikhonov regularisation for non-linear ill-posed problems: Optimal convergence rates and finite-dimensional approximation,

Inverse Problems 5 (1989) 541–557.
[5] F. O’Sullivan, G. Wahba, A cross validated Bayesian retrieval algorithm for nonlinear remote sensing experiments, J. Comput. Phys. 59

(1985) 441–455.
[6] U. Tautenhahn, On a general regularization scheme for nonlinear ill-posed problems, Inverse Problems 13 (1997) 1427–1437.
[7] J. Eriksson, Optimization and regularization of nonlinear least squares problems. PhD thesis, Department of Computing Science, Umea

University, Sweden, 1996.
[8] A.B. Bakushinskii, The problem of the convergence of the iteratively regularized Gauss–Newton method, Comput. Math. Phys. 32 (1992)

353–1359.
[9] B. Blaschke, A. Neubauer, O. Scherzer, On convergence rates for the iteratively regularized Gauss–Newton method, IMA J. Numer.

Anal. 17 (1997) 421–436.
[10] T. Hohage, Logarithmic convergence rates of the iteratively regularized Gauss–Newton method for an inverse potential and an inverse

scattering problem, Inverse Problems 13 (1997) 1279–1300.
[11] P. Deuflhard, H.W. Engl, O. Scherzer, A convergence analysis of iterative methods for the solution of nonlinear ill-posed problems under

affinely invariant conditions, Inverse Problems 14 (1998) 1081–1106.
[12] U. Tautenhahn, Numerische Vergleiche zwischen Tikhonovscher und stochastischer Regularisierung nichtlinearer Systeme am Beispiel

der Auswertung von Satellitenmessdaten, Beitr. Num. Math. 11 (1983) 161–171.
[13] K.-N. Liou, An Introduction to Atmospheric Radiation, Academic Press, Orlando, 1980.
[14] G.P. Anderson, S.A. Clough, F.X. Kneizys, J.H. Chetwynd, E.P. Shettle, AFGL atmospheric constituent profiles (0–120 km), Technical

Report TR-86-0110, AFGL, 1986.
[15] SLATEC, Common Mathematical Library (Version 4.1), Available from NetLib http://www.netlib.org/, July 1993.
[16] D. Kahaner, C. Moler, S. Nash, Numerical Methods and Software, Prentice-Hall, Englewood Cliffs, NJ, 1989.
[17] F. Schreier, B. Schimpf, A new efficient line-by-line code for high resolution atmospheric radiation computations incl. derivatives, in:

W.L. Smith, Y. Timofeyev (Eds.), IRS 2000: Current Problems in Atmospheric Radiation, A. Deepak, 2001, pp. 381–384.
[18] G. Wahba, Spline Models for Observational Data, SIAM, Philadelphia, PA, 1990.
[19] P.C. Hansen, Rank-Deficient and Discrete Ill-Posed Problems: Numerical Aspects of Linear Inversion, SIAM, Philadelphia, PA, 1998.
[20] P. Eriksson, Analysis and comparison of two linear regularization methods for passive atmospheric observation, J. Geophys. Res. 105

(2000) 18 157–18 167.
[21] C. Brezinski, M. Redivo-Zaglia, G. Rodriguez, S. Seatzu, Multi-parameter regularization technique for ill-conditioned linear systems, in:

Applied Inverse Problems: Theoretical and Computational Aspects, Montecatini Terme, Italy, June 2001.
[22] T. Steck, T. von Clarmann, Constrained profile retrieval applied to the observation mode of the Michelson interferometer for passive

atmospheric sounding, Appl. Opt. 40 (2001) 3559–3571.



226 A. Doicu et al. / Computer Physics Communications 148 (2002) 214–226

[23] W.P. Gouveia, J.A. Scales, Resolution of seismic waveform inversion: Bayes versus Occam, Inverse Problems 13 (1997) 323–349.
[24] C.R. Vogel, Non-convergence of the L-curve regularization parameter selection method, Inverse Problems 12 (1996) 535–547.
[25] B. Schimpf, F. Schreier, Robust and efficient inversion of vertical sounding atmospheric high-resolution spectra by means of regularization,

J. Geophys. Res. 102 (1997) 16 037–16 055.
[26] F.O. Gonzáles, M. Vélez-Reyes, Algorithms for nonlinear retrieval problems in atmospheric remote sensing using regularization methods,

in: J.E. Russell (Ed.), Proc. SPIE, in: Satellite Remote Sensing of Clouds and Aerosols III, Vol. 3495, 1998, pp. 110–121.
[27] C. Englert, B. Schimpf, M. Birk, F. Schreier, M. Krocka, R.G. Nitsche, R.U. Titz, M.E. Summers, The 2.5 THz heterodyne spectrometer

THOMAS: Measurement of OH in the middle atmosphere and comparison with photochemical model results, J. Geophys. Res. 105 (2000)
22 211–22 223.


