A Simple Model for Instantaneous Radiative Forcing by Optically-Thin Gases
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Introduction

* Simple analytical models for radiative forcing by CO, (e.g.,
[1],[2]) have lent insight into phenomena such as negative
forcing by CO, at the poles.

* These models rest on the cooling-to-space-theory, where
all emission of infrared radiation is assumed to originate at
one pressure level in the atmosphere where the gas is

optically-thick (t~1).

 Here, we extend this theory to optically-thin gases (7 < 1);

we focus on CFC-12.

Monochromatic Forcing

We start with the monochromatic Schwartzschild’s equation:
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Assuming the gas emits from some average atmospheric
temperature, we pull the Planck function out of the integral:
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and when 7 < 1 we take
w = 1. This is equivalent
to asserting that
transmissivity changes
linearly in pressure.

Note that for an optically-
thick gas such as CO,,
taking w = § (Prn)
returns the cooling-to-
space model [e.g., 1-3].
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Monochromatic Forcing Model Validation
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The model is agnostic to absorption coefficient shape and predicts

forcing monochromatically across a wide range of gases, includ
optically-thin CO,, with small errors.
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Finally, as T < 1, we approximate transmissivity with the
Taylor series expansion around 0:e™* = 1 — 17 = AT = Ar.

Then the model becomes
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Spectral Integration

As we take the forcing to be linear in optical depth T, and idealize T as

linear in pressure for reference absorption coefficient k:
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Then the band-integrated forcing can be modeled
surface emission at central wavenumber band-mean atmospheric thickening
% D * *
F = (B(];,, v*) — B(v )) ATH(8V).
mean atmospheric emission band width
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Overlap with Water Vapor

Following [1], monochromatically,

we assume that the level where

Tyo = 0.6 replaces the surface. To

integrate spectrally, we: <

* assume no correlation between
the absorption coefficients of
CFC-12 and H,0.
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* Model their optical depths according to [1,4], and add them together.
* Split the band into two parts: where

, and where TH,0 > 0.6.

* C(Calculate the mean emission temperature of the H20 [1].

Then our model becomes:
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Idealized Atmospheres

We create atmospheres with a moist adiabatic lapse rate in the
troposphere and an isothermal stratosphere at 200K, following
[1]. Then, borrowing from [5], we idealize the Planck function

profile as a power law 0

in pressure, wherey 0. |
describes the lapse —— moist adiabat ——  moist adiabat
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And our model becomes

mean change in
optical depth

T = (%/) B(T,, v*)AT (V).

Planck function
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lapse rate scaling

— this formulation highlights the dependence of the forcing
on the lapse rate, or the vertical structure of the atmosphere.
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In the LBL calculations for idealized atmospheres, CFC-12 forcing peaks at ~290 K, which
our model doesn’t capture. We also don’t see this in ERAS profiles.
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Conclusion

 QOursimple model highlights the dependence of optically-
thin gas forcing on the temperature structure and the total
optical thickening of the atmosphere.

* The model shows that optically-thin gas forcing is linear in
concentration, and this dependence holds
monochromatically.
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