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Impact of the 2022 Hunga Volcano on Global Middle Atmosphere
Water Vapour and Introduction of the Swiss H20 Hub
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Hunga Tonga Water Vapour

Radiative Impact at 14km asl

Bern, CH

* Positive anomaly, increases through summer 2023
* Difference less pronounced than at latitude of eruption — magnitude

estimated 150 Tg of water vapour into the atmosphere, with the plume
height reaching up to 55km?*=,

* Over the following two years, water vapour was transported across the and height of water vapour anomaly important
globe. « Mean increase In long-wave downwelling: 0.06W/m?
10-3 31 days since 1 Jan 2022 10 - 2023 CllmatOIOgy
__18.2
£
1072 = 18.1 ol
S @ Ap
—~ = © 18.0
& 107 = S /
: = S 17.9 /
E 100 g 5 \ ///
0 _ Z
= = § 17.7 R 7
Scan to see what = = \ A/
comes next 10! g 176 .
s 17.5 \'““'w;://
102 S
—80 17.4
Latitude (degrees) 3> N NG > NG o N P N
i . : : : SV IV SV SV SV SV SV SV
Figure 1: Zonal mean water vapour mixing ratio from the Microwave Limb Sounder v v v v v Time"’ v v v

onboard the Aura satellite, from 1% January 2022 until the 20™ September 2023.

Figure 4: Simulated long-wave downwelling radiation at 14km asl above Bern one
year after the eruption of the Hunga volcano.

Observations above Bern, CH [49° North]

* Instrumental dataset: Mlddle Atmosphere WAter vapour RAdiometer

(MIAWARA); Aura MLS; ACE-FTS Objective: Close critical observational gaps in the atmospheric water
» Good agreement between all instruments vapour profile from the surface to the mesosphere by combining in-situ
and remote sensing observations in a development/testing phase and a
* Higher than average H20 in summer 2022, very large anomaly in monitoring phase.

summer 2023 | o | | N | |
Continuously re-visiting calibration, traceability, and homogeneity of this

* As of March 2024, above average mixing ratios persist Essential Climate Variable (ECV) to guarantee usability for climate
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Figure 2: Water vapour mixing ratio above Bern, CH observed by three instruments 02f | ALBATROSS (contaminated) || 80
between 2015 and 2024 (left); mixing ratio from MIAWARA showing the year-by-year T A (et
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Simulating Long-wave Downwelling Radiation 5 E "
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* Line by line radiative transfer simulations performed with the =0 E
. . . 3 g .
Atmospheric Radiative Transfer (ARTS) : & 140 <
~50 km E 1
« CO,, H,O and O, most radiatively important gases for long-wave ] " 1
downwelling at bottom of stratosphere (14km asl). - 4 20
10°) &
 "Simulated annealing" method® was used to select a reduced number R
of frequencies Total long-wave downwelling radiation simulated from N s B,
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60 Simulation of Dow.n.welling Irradiance at Zenith H,O mixing ratio [ppm]
R I R L G S S eSS SaSSs " Figure 5: Swiss H20 Hub instruments and their operating range (left); results from
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Figure 3: Simulated downwelling radiative power at different heights above the 3. Buehler, Stefan A., et al. "Efficient radiative transfer simulations for a broadband infrared
surface for a typical atmospheric profile above Bern, CH (left); spectral radiant radiometer—Combining a weighted mean of representative frequencies approach with frequency
Intensity at a zenith viewing angle originating with the main emitting gases selection by simulated annealing." Journal of Quantitative Spectroscopy and Radiative Transfer

highlighted. 111.4 (2010): 602-615.
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