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a b s t r a c t

We present a method to efficiently simulate the measurements of a broadband infrared

instrument. The High Resolution Infrared Radiation Sounder (HIRS) instrument is used

as example to illustrate the method. The method uses two basic ideas. Firstly, the

channel radiance can be approximated by a weighted mean of the radiance at some

representative frequencies, where the weights can be determined by linear regression.

Secondly, a near-optimal set of representative frequencies can be found by simulated

annealing.

The paper does not only describe and analyze the method, it also describes how the

method was used to derive optimized frequency grids for the HIRS instruments on the

satellites TIROS N, NOAA 6–19, and Metop A. The grids and weights as well as the

optimization algorithm itself are openly available under a GNU public license.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Radiative transfer (RT) simulations for broadband
infrared (IR) radiometers are computationally expensive,
because of the fine spectral structure inside the instru-
ment bands. A typical example of the class of instruments
we are concerned with here is the High Resolution
Infrared Radiation Sounder (HIRS), which flies on the
NOAA and MetOp series of satellites.
ll rights reserved.

þ46 980 7 9050.
Even for the clear-sky case, simple RT simulations for
this instrument are costly, because they require thou-
sands of monochromatic RT calculations for each instru-
ment channel, which are then integrated according to the
instrument channel response function. In the presence of
clouds this problem is even worse, since the individual
monochromatic RT calculations then are computationally
much more expensive.

Simulated annealing (SA) is a well-established method
for solving global optimization problems, i.e., for finding
the global maximum or minimum of a function [1]. It is
particularly well suited for functions that depend
on many variables and that are strongly nonlinear,

www.elsevier.com/locate/jqsrt
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a case where many other optimization methods are not
applicable.

In this article, we show how SA can be combined with
a linear regression method to find representative fre-
quencies and associated weights for HIRS RT simulations.
The presented method is an alternative to the established
correlated k method for efficient RT simulations in the IR
spectral range. To our knowledge, there is only one other
article Moncet et al. [2] that describes a similar approach
to modeling broadband IR radiances.

We focus on the HIRS instrument to have a well
defined test case to illustrate and test the method.
However, the method itself is completely general and
could be easily applied to other similar instruments.
Furthermore, we focus on the clear-sky case, but the
method is in principle equally applicable to cloudy
radiances, provided that the RT model is sufficiently fast
to calculate the required high spectral resolution refer-
ence simulations in a reasonable time.

The article is structured as follows: Section 2 describes
the RT model that was used for this study, explains the
weighted mean of representative frequencies approxima-
tion, and describes how simulated annealing can be used
to find a near-optimal frequency grid. Section 3 investi-
gates the methods performance and discusses its accuracy
and limitations. Finally, Section 4 contains summary and
conclusions.
2. Methodology

2.1. The ARTS model

The Atmospheric Radiative Transfer Simulator (ARTS)
is a flexible and powerful radiative transfer model for the
thermal radiation spectral range (microwave to infrared).
It is written in the Cþþ programming language and
freely available under a GNU public license from the web
site http://www.sat.ltu.se/arts/. A general description of
the clear-sky part of the model can be found in Buehler
et al. [3]. For calculations in the presence of clouds, ARTS has
two alternative scattering algorithms, a discrete ordinate
iterative solution method [4] and a Monte Carlo method [5].
The model has been validated against other RT models in
various intercomparison studies, for example Melsheimer
et al. [6], Buehler et al. [7], and Saunders et al. [8].

ARTS has already been used in a large and diverse
number of applications. It was for example applied to
analyze sub-millimeter wave limb sounder data, both for
operational instruments [9,10] and for planned future
missions [11–13]. It was also used extensively to analyze
operational meteorological microwave satellite measure-
ments [14–17], to simulate future sub-millimeter cloud
ice measurements [18–20], and to simulate radio occulta-
tion measurements [21]. Furthermore, it was used to
investigate the impact of clouds on ground based
measurements of the cosmic microwave background
[22] and to simulate outgoing longwave radiation fluxes
[23,24]. Other diverse applications include the analysis of
ground based [25,26] and airborne [27] microwave data,
the analysis of ground based Fourier transform infrared
spectrometer data [28], the airborne retrieval of snow
microwave emissivity [29], and the simulation of the full
Stokes vector in inhomogeneous precipitation [30].

The strength of ARTS is that it can be applied to a wide
range of flux calculations and sensor simulations, in
different viewing geometries. A drawback of this flex-
ibility is that it may require some work to set up the
model for a particular application. To ameliorate this, we
include setup files for some standard instruments. The
basis for this article is the ARTS standard setup for HIRS
simulations.

2.2. The HIRS instrument

The High Resolution Infrared Radiation Sounder (HIRS)
is described for example in Smith et al. [31]. At present,
data are available from 15 different HIRS instruments
since 1978. HIRS measures radiation coming from Earth
and its atmosphere primarily in the IR region of the
spectrum. This includes both thermal IR (Channels 1–12)
and near IR (Channels 13–19). Furthermore, there is one
channel in the visible spectral range (Channel 20). We
focus on the thermal IR channels here. They are widely
spaced over a large part of the Planck curve for typical
atmospheric temperatures. Fig. 1 shows the HIRS channel
positions, relative to the atmospheric IR spectrum.

Figs. 2 and 3 show the spectral response of the
different thermal radiation HIRS channels. They also
show zenith opacity spectra of various trace gases, so
that one can easily see which trace gas is important for
which channel. Spectral response functions vary between
different HIRS instruments (on different satellites). All
figures in this section are for HIRS on NOAA 14.

2.3. Broadband infrared radiative transfer simulations

Broadband infrared radiometers, such as HIRS, have a
typical bandwidth of 50 cm�1, much wider than the width
of individual spectral lines (compare Fig. 2). The instru-
ment measures the integral of the radiance spectrum,
weighted by some broad channel response function.

The straightforward approach to simulating such mea-
surements is to calculate the monochromatic radiance
spectrum on a high resolution frequency grid, fine enough
to resolve all spectral features, and then do the integration
as a discrete sum over all frequencies with weights
according to the instrument channel response. Explicitly,

Iint ¼

Z
RðnÞIðnÞdn �

X
i

RðniÞIðniÞDni; ð1Þ

where Iint is the integrated radiance for an instrument
channel, n is frequency, RðnÞ is the instrument channel
response function, and IðnÞ is radiance. The radiances IðniÞ at
the individual grid frequencies can be easily calculated by
solving the monochromatic radiative transfer (RT) equation.
It should be noted here that, to be consistent with the HIRS
channel response functions, I should be in radiance units
ðW=ðm2 sr HzÞÞ, and not in brightness temperature units (K).

This approach is robust and exact, provided that the
frequency grid is fine enough to resolve all spectral features.

http://www.sat.ltu.se/arts/
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Fig. 1. Positions of NOAA 14 HIRS thermal radiation channels relative to

the atmospheric radiance spectrum. Gray bands indicate HIRS channel

positions. For Channels 8–12 their shape indicates the shape of the

channel response function (with arbitrary scaling). For Channels 1–7

only the center positions are shown, because these channels overlap

significantly (see Fig. 2). Smooth black curves show Planck functions for

different temperatures. The temperatures are 225, 250, 275, and

299.71 K, where the latter corresponds to the surface temperature. The

blue curve shows the atmospheric spectrum for a tropical atmosphere,

calculated on a frequency grid with 2:5 cm�1 resolution. (For interpreta-

tion of the references to color in this figure legend, the reader is referred

to the web version of this article.)
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Fig. 2. Atmospheric zenith opacity spectra and HIRS spectral response functio

channel response functions. Colored lines show the zenith opacity for key trace

calculation was done on a 0:02 cm�1 resolution frequency grid, but subsequently

channel response functions for the HIRS instrument on NOAA 14. They were

Channels 1–7 and 10, see Fig. 3 for the other thermal radiation channels. (For in

referred to the web version of this article.)
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Characteristics of a particular instrument, such as spectral
response function shape and antenna pattern, can be
simulated efficiently by multiplying the monochromatic
radiances with a pre-calculated sensor response matrix [32].

Unfortunately, however, the straightforward approach
typically requires thousands of individual RT calculations,
one for each point in the frequency grid. For broadband IR
instruments it is therefore only suitable for reference
calculations, not for operational use.
2.4. The correlated k method

The correlated k method [33–35] is a method that is
often used to reduce the number of frequency grid points
for which monochromatic RT calculations have to be
done. The basic idea of the method is to sort the frequency
grid according to the absorption coefficient at the
different frequencies. On the re-ordered frequency grid
the spectrum is smooth and monotonic, so that it can be
approximated with very few frequency grid points and
linear interpolation between the grid points.

The advantages of the method are that it is efficient
and conceptually easy. The disadvantage is that the exact
sorting depends on pressure, temperature, and trace gas
concentration. It is thus not straightforward to determine
the optimal compromise for the frequency grid sorting,
optimal in the sense that it minimizes the error over a
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−−H20
−−O3
−−CO2
−−N2O

ed ARTS Opacity Spectrum

800 850
0
0.06
0.12
0.18
0.24
0.3
0.36
0.42
0.48
0.54
0.6
0.66
0.72
0.78
0.84
0.9
0.96
1.02
1.08
1.14
1.2

C
ha

nn
el

 R
es

po
ns

e 

[cm−1]

ns. The left y-axis is for the opacity spectra, the right y-axis is for the

gas species for a midlatitude summer atmospheric scenario. The opacity

binned to 0:3 cm�1 resolution to get smoother curves. Black curves show

normalized such that the peak of each function is 1. The figure shows

terpretation of the references to color in this figure legend, the reader is



ARTICLE IN PRESS

−5

−4

−3

−2

−1

0

1

2

3

4

5

8 9

−−H20
−−O3
−−CO2
−−N2O
−−CH4

lo
g1

0 
(O

pa
ci

ty
)

NOAA−14 HIRS SRFs and Simulated ARTS Opacity Spectrum

850 900 950 1000 1050 1100
0
0.06
0.12
0.18
0.24
0.3
0.36
0.42
0.48
0.54
0.6
0.66
0.72
0.78
0.84
0.9
0.96
1.02
1.08
1.14
1.2

C
ha

nn
el

 R
es

po
ns

e 

−5

−4

−3

−2

−1

0

1

2

3

4

5

11 12

−−H20
−−O3
−−CO2
−−N2O
−−CH4

lo
g1

0 
(O

pa
ci

ty
)

NOAA−14 HIRS SRFs and Simulated ARTS Opacity Spectrum

1300 1350 1400 1450 1500 1550 1600
0
0.06
0.12
0.18
0.24
0.3
0.36
0.42
0.48
0.54
0.6
0.66
0.72
0.78
0.84
0.9
0.96
1.02
1.08
1.14
1.2

C
ha

nn
el

 R
es

po
ns

e 

Wavenumber [cm−1]

Wavenumber [cm−1]

Fig. 3. As Fig. 2, but for Channels 8 and 9 (top) and 11 and 12 (bottom).
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large ensemble of atmospheric cases and for different
instrument viewing angles.

2.5. The weighted mean of representative frequencies

(WMRF) approximation

The WMRF approximation introduced here is numeri-
cally quite similar to the correlated k method, but its
derivation and theoretical justification are different. The
simple assumption underlying this method is that the
radiance at a single frequency will be representative for
the radiance at some other frequencies (where atmo-
spheric optical properties are similar). Thus, the inte-
grated radiance for a broad instrument channel can be
approximated as

Iint �
~I int ¼

Xn

j¼1

wjIðnjÞ; ð2Þ
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with a set of n appropriately selected frequencies nj and
associated weights wj. In contrast to the ni in Eq. (1), the nj

here can be reduced, so that there can be a considerable
saving of computational cost. (According to our results
presented later, less than approximately 20 nj are
sufficient to accurately reproduce a reference calculation
with several thousand ni.)

We will call Eq. (2) the Weighted Mean of Representa-
tive Frequencies (WMRF) approximation. The authors of
[2] also used Eq. (2) as a starting point for an RT algorithm
that they call Optimal Spectral Sampling (OSS). We are not
using that name here, since OSS refers to the entire RT
calculation strategy, including the frequency selection.
However, our method shares several key properties with
OSS, as will be discussed further below.

The obvious questions about Eq. (2) are how to select
the nj and how to determine the associated wj. One
possible strategy would be to pick regular intervals in an
absorption-sorted frequency grid and assume linear
interpolation, in which case the method would be very
similar to the correlated k method.

If a set of frequency grid points nj is given, then one can
easily determine the optimal weights wj by multiple
linear regression over a set of reference calculations for an
ensemble of atmospheric states as. The optimal weights
are those that minimize a cost function that is some
measure for the error of the approximation.

Natural choices for the cost function are the absolute
RMS error Eabs or the relative RMS error Erel, defined as

Eabsðnj;wjÞ ¼ rmsð~I intðas; nj;wjÞ � IintðasÞÞ;

Erelðnj;wjÞ ¼ rms
~I intðas; nj;wjÞ � IintðasÞ

IintðasÞ

 !
; ð3Þ

where rms() indicates the root mean square. As the
radiance varies strongly with frequency, the relative error
was chosen as the appropriate quantity to minimize.

Concerning the weights wj, we demand them to be
positive, consistent with our physical understanding of
the problem. Negative weights would mean partial
cancelation of terms, which is undesirable if the approx-
imation is to generalize well. In practice, this is imple-
mented by simply removing frequencies with negative
weights from the list of active frequencies.

As pointed out by [2], it is desirable that the sum of all
weights equals exactly one, so that Eq. (2) corresponds to
a true weighted mean. The actual sum of the weights
determined by regression is usually close to one, but not
exactly one. (The maximum deviation that we encoun-
tered for the final weights without normalization was
0.0002.) To force the weight sum to be exactly one, we
normalize the weights by dividing them by the actual
weight sum value. This differs from the approach of [2],
who do the regression only for frequencies 1 to n� 1, and
assign weight wn ¼ 1�

Pn�1
j¼1 wj to frequency n.

Since we know how to find optimal weights wj for a
given set of frequencies nj, we are left with the problem of
how to find the nj. Unfortunately, the number of possible
sets is combinatorially large, since there are

N

n

� �
¼

N!

n!ðN � nÞ!
ð4Þ

ways to select a set of n frequencies from a total of N,
where ðNnÞ indicates the binomial coefficient. For example,
there are approximately 2:6� 1023 possibilities to select
10 frequencies out of a set of 1000. Hence, trying all
possible sets is impractical. At the same time, the cost
function Eðnj;wjÞ is very nonlinear, so that analytical
methods to find the minimum are not applicable. Hence, a
stochastic method is required.

One possibility is to guess appropriate frequencies,
based on opacity, list of absorbing species, and other
factors, and then fine tune the initial selection by trial and
error. This was termed ‘pseudo-k’ approach by Frank
Evans, and used for example to create training data for the
proposed SIRICE and CIWSIR [18,19] sub-millimeter ice
cloud satellite missions.

A more formal approach is described in Wiscombe and
Evans [36], who apply the method to transmission instead
of radiance. The problem to select representative fre-
quencies arises similarly in that case. Their algorithm
starts with n ¼ 1 and determines the best frequency n1 by
an exhaustive search. Then more frequencies are added
successively, each time doing an exhaustive search for the
frequency that gives the largest improvement when
added to the existing set. Some special measures are
necessary to prevent the algorithm from being trapped in
local minima.

In the OSS article, [2] describe an algorithm which they
call Monte Carlo search, and which shares key properties
with our algorithm. We shall come back to it below.
2.6. Simulated annealing

The simulated annealing method is described for
example in Kirkpatrick et al. [1]. It is a method of
randomly moving a simulated system through different
states, in order to find a global minimum in some cost
function, such as Eq. (3).

Assume that the system is initially in a state S0 (for
example a random state). In our application of the method
each state S corresponds to a selection of frequency grid
points. To be fully explicit here, we first calculate
simulated spectra on a high resolution frequency grid
for an ensemble of atmospheric conditions. The state S of
the system is given by a selection of n frequencies among
all the available frequencies. We also call the frequencies
in S the active frequencies, and all others the inactive
frequencies.

The number n of frequency grid points nj is fixed and
much smaller than the number N of frequency grid points
ni in the high resolution reference calculations. The
optimization problem to be solved is to find the optimum
set of frequencies for a given n. (Later, one can then
increase n until a desired accuracy is reached.)

The system is fully described by the set of active
frequencies S, because the associated weights can be
calculated directly by linear regression over the ensemble
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of atmospheric conditions. In practice the regression is
also over the set of possible instrument viewing angles,
since the goal is to find a set of frequencies that works for
all viewing angles.

To implement the simulated annealing method, one
needs to define a function

S0 ¼ neighborðSÞ; ð5Þ

which returns a new state S0 of the system that is in some
sense a neighbor of the original state S. In our imple-
mentation of the method this function exchanges one of
the active frequencies with a random inactive frequency.
We will call the operation of changing S to S0 a move of the
system.

For the new frequency set S0 the weights wj
0 are

determined by multiple linear regression, and the cost E0

is calculated according to Eq. (3). If E0 is lower than E then
the new frequency set S0 is better than the original one S,
and the move is therefore accepted. However, if one were
to accept only moves where E is decreased, the algorithm
would run into a local minimum of E very quickly, instead
of finding a global minimum.

The key feature of the simulated annealing method is
that sometimes the new state is accepted even if it results
in an increase of E. This step is controlled by an
acceptance probability function pðE� E0; TÞ. The classical
choice of this function is

pðE� E0; TÞ ¼
1 E0oE;

expððE� E0Þ=TÞ E0ZE:

(
ð6Þ

This choice of p function, and the notation used, suggest
an analogy with the physical process of annealing in
metallurgy, where heating and slow cooling is used to
create a more regular crystal structure in a material. In the
analogy, E corresponds to the energy of the system, T to
the temperature, and p resembles the Boltzmann prob-
ability factor. Note that the ‘temperature’ T as defined by
Eq. (6) has the same unit as the error (or energy)
E. Technically, the p function is used in our annealing
code as follows: We do a test move and calculate p. Then
we create a uniformly distributed random number x in the
open interval ]0,1[ with the Matlab ‘rand’ function. The
move is accepted if xop.

The algorithm starts with a high T, so that nearly all
moves are accepted. Then T is gradually reduced, so that
the system is pushed towards states with lower E, but
without getting stuck in local minima. (The exact
procedure is described in more detail below.) At the
end, when T is very small, the system is effectively
‘frozen in’ and no more moves are possible. The
algorithm will always lead to a state with very low E,
compared to the entire state space. We call this
unrigorously ‘a global minimum’ here. It should be
noted, however, that it is unlikely to find the true global
minimum. But for the application described here (and
many others) the true global minimum is only of
theoretical interest, while in practice any state with very
low E is acceptable.

Our algorithm shares key properties with the OSS
algorithm described by [2]. In OSS, new frequency sets
are also accepted with a certain probability that is
adjusted as the algorithm progresses. However, OSS
retains from the Wiscombe and Evans [36] algorithm
the idea to use the state SðnÞ for n frequencies as the
starting point for the search for the best state Sðnþ 1Þ.
Our algorithm does not use this concept. For each n we
start with a random state and a high ‘temperature’, and
derive the solution by ‘cooling down’ the system, as
described above.

For the study described here, the algorithm was
implemented as a set of simple Matlab functions. The
code is publicly available from our web page as part of the
Atmlab software package (see Section 4 for address).

2.7. Example case HIRS

The HIRS instrument ideally serves to illustrate the
method. High resolution reference spectra for this instru-
ment were calculated with the RT software ARTS for a set
of 42 different atmospheric states. The atmospheric states
were those from Garand et al. [37]. The Garand data set
contains pressure, temperature, and concentrations of the
trace gases H2O, O3, CO2, N2O, CO, and CH4. The spectra
were simulated for five different viewing angles, covering
the viewing angle range of HIRS.

The frequency grid for the reference calculations
contained 72 717 frequencies in total, equally spaced in
frequency (but only within the instrument bands). The
HIRS instrument setup was the one that is distributed
along with ARTS. It contains channel response functions
for all different versions of HIRS (on different satellites) as
distributed by NOAA/NESDIS (http://www.star.nesdis.-
noaa.gov/smcd/spb/calibration/hirs/hirssrf.html). Figs. 2
and 3 show these functions for NOAA 14.

Since some channels overlap, it is theoretically most
efficient to simulate all channels simultaneously, so that
some frequencies are used for more than one channel. We
can take this into account in the optimization process, so
the system state S is a selection of frequencies for all
channels, not just for one. However, in that case we
impose the constraint that the frequencies contribute to
the sum of Eq. (2) only if they are inside the same channel.
This constraint is believed to increase the robustness and
generalizability of the method.

The example results shown in Sections 3.1 and 3.2 use
the simultaneous optimization approach. However, for
the final set of optimizations for operational use, dis-
cussed in Sections 3.3 and 3.4, we decided to use the more
primitive approach of optimizing the grid separately for
each channel. That option leads to faster convergence of
the algorithm, at the cost of slightly more frequencies in
the final grid.

3. Results and discussion

3.1. Annealing algorithm performance

Fig. 4 shows how the error E between the fast
calculation and the reference calculation develops with
time (iteration count). This example calculation tries to

http://www.star.nesdis.noaa.gov/smcd/spb/calibration/hirs/hirssrf.html
http://www.star.nesdis.noaa.gov/smcd/spb/calibration/hirs/hirssrf.html
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find the best combination of 133 frequencies to cover all
HIRS bands for NOAA 14.

The chosen number of frequencies here is arbitrary,
since the aim is only to illustrate how the method works.
The annealing algorithm will optimize the frequency
selection for any (fixed) number of frequencies. This
implies no loss of generality, since the whole procedure
can be easily repeated with a different number of
frequencies. Later on (in Section 3.3) we present calcula-
tions where frequencies have been successively added
until a desired accuracy was reached.

The annealing run contained almost 4 million itera-
tions, which were executed in blocks of 10 000. After each
block, the RMS error for the block was calculated, together
with the maximum and minimum errors. The blue shaded
region in the figure is the area between the minimum and
maximum errors; the RMS error lies in between.

The evolution of the block RMS error is used to
adjust the ‘temperature’ T. If the error has not
decreased between the last block and the block before,
then T is reduced (in this case multiplied by 0.9). The
idea of this cooling scheme is to only cool if the system
has reached an equilibrium, marked by a steady error
level. This avoids a too rapid cooling which would lead
to the algorithm being trapped prematurely in a local
minimum.

One practical problem is how to select the initial T at
the start of the annealing run. We solve this by simulating
one block of 10 000 iterations where we accept all moves
and save their errors. Then we choose the initial T such
that almost all of the moves would have been accepted.
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optimizations in Section 3.3 did not use this unit, but used the relative error in ra

the reader is referred to the web version of this article.)
Specifically, it was set here so that 99% of the moves
would have been accepted.

Choosing a too low initial T will lead to the algorithm
not really exploring the full range of possibilities, and
should therefore be avoided. Choosing a too high initial T,
on the other hand, will not affect the annealing result, but
will waste computation time during which T is reduced to
a more appropriate value. Our choice is quite conserva-
tive, which can be seen from the fact that at the beginning
(at low iteration number) the error E decreases rapidly.
This is due to the elimination of obviously bad frequency
combinations, where for example some instrument
channel has no frequency at all.

After this initial drop E changes only very slowly up to
approximately iteration block 120, although T decreases
steadily. From approximately iteration block 120 onwards
the system ‘condenses’, because T is now so low that only
rather good frequency combinations (that lead to low E)
have a chance to be accepted.

Towards the end of the run the accepted moves get
fewer and fewer. The frequency combination is near
optimal, so it is unlikely to find a better one by random
changes. At the same time T is now very small, so it is
unlikely that a move that increases E is accepted. The
algorithm is stopped if there are no more successful
moves inside one entire block.

We find the convergence behavior that is seen in Fig. 4
to be general for all annealing runs that were carried out.
It leads to a characteristic S shape in a log–log plot of E

versus T (Fig. 5). The entire run took approximately 15 h
on a PC.
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3.2. Example results for HIRS channel 12

We use the example of Channel 12 for HIRS on the
NOAA 14 satellite to discuss the results of the annealing
optimization. The top plot of Fig. 6 shows the high
resolution atmospheric spectrum in blue. This is the
spectrum for the near-nadir looking direction and the first
of the 42 Garand atmospheric scenarios. The spectrum is
dominated by water vapor absorption features in this
frequency region. The spectral response function of HIRS
Channel 12 on NOAA 14 is superimposed in green. The
nine black vertical lines indicate the selected represen-
tative frequencies.

The selected frequencies cover nearly the entire range
of observed brightness temperatures ðTbÞ. What is more,
they cover the Tb range quite uniformly, which is more
apparent if the spectrum is sorted by increasing Tb, as
shown in the bottom plot of the figure. Numbers mark
identical frequencies.

Here the relationship to a correlated k method is
clearly visible. Both methods lead to regularly spaced
representative frequencies in the re-sorted frequency grid.
The difference is that in our case the spacing is the
outcome of the optimization procedure, whereas for a
correlated k method it is prescribed.

An obvious question about Fig. 6 is why the frequency
pairs 3–8 and 4–9 are so close together in the bottom
plot. Would it not be better to spread out the frequencies
more homogeneously? The answer is that the sorting
depends on the atmospheric conditions. Fig. 7 shows
that for Garand scenario 2 the sorting is quite diffe-
rent from scenario 1 (and the other 40 are again different).
The position of the WMRF frequencies is derived by
minimizing the RMS error over all 42 scenarios, so
they are a reasonable compromise for each individual
scenario.
However, there is something else that is odd about
frequencies 8 and 9. Their weights (shown by the green
bars in the bottom plots of Figs. 6 and 7) are very small
compared to the other weights. If the frequency set is
really optimal in some sense, there must be a reason for
the presence of these frequencies despite their small
weights. The reason must be that these frequencies
represent important aspects of the spectrum for certain
atmospheric conditions. Indeed, a closer analysis reveals
that they play an important role in some of the atmo-
spheric scenarios, as shown in Fig. 8. For the conditions of
Garand scenario 7, frequency 9 alone represents the most
transparent regions of the spectrum, where Tb is the
highest. For the conditions of scenario 12, frequency 8
alone represents the most opaque regions of the
spectrum, where Tb is the lowest.

3.3. Operational optimization runs

WMRF frequency grids and weights were derived for a
variety of HIRS sensors and are included with the ARTS
model distribution. Specifically, we have calculated them
for the HIRS instruments on the satellites TIROS N, NOAA
6–19, and Metop A.

The training data were based on the 42 Garand
profiles, but contained each profile for three different
surface emissivities, 1.0, 0.8, and 0.6, so that there are 126
training cases in total. Five different HIRS viewing angles
were simulated for each training case.

Each channel of each instrument was optimized
separately. The optimization was done iteratively, starting
with 5 frequency grid points for each channel. An
annealing run was carried out to minimize the relative
error in radiance. If the final fractional relative error was
above 10�4, the procedure was repeated with one
frequency more. In other words, frequencies were added,
until the desired accuracy was reached. For a scene
brightness temperature of 300 K, the choice of 10�4 for the
desired fractional relative accuracy corresponds to an
absolute accuracy in brightness temperature of
10�4

� 300 K ¼ 0:03 K, sufficient for accurate instrument
simulation.

This iterative optimization procedure results in 5–22
frequencies for each channel. In the case of NOAA 14, the
average number is 17 frequencies per channel.

3.4. Error analysis and test of generality

The derived operational frequency and weight sets for
HIRS on NOAA 14 were used for testing the accuracy of
the WMRF fast calculations. Over the 42 Garand scenarios,
the RMS error of the WMRF fast calculations compared to
the reference calculations in brightness temperature units
was found to be 0.014 K. This very good agreement for the
Garand scenarios is expected, since these are the scenarios
used for training, so this is really only a test of our
method’s self consistency.

A more ambitious test is to compare reference and
WMRF calculations for an independent set of atmospheric
scenarios. The diverse data set by Chevallier et al. [38] was
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used for this purpose. More precisely, we started with the
diverse Chevallier data sets for temperature, humidity,
and ozone, which are a total of 15 000 atmospheric
scenarios. From these 15 000 scenarios, 1000 were drawn
randomly for the test.

The Chevallier scenarios do not contain all trace gases
of the Garand scenarios: they are missing CO2, CH4, N2O,
and CO. For the test calculations, these were set to
VMRðCO2Þ ¼ 3:60e� 04, VMRðCH4Þ ¼ 1:7e� 6, VMRðN2OÞ
¼ 3:2e� 7, and VMRðCOÞ ¼ 0. These volume mixing ratios
are typical tropospheric values for these species in the
Garand scenarios, except for CO. For CO the assumption of
a constant VMR value is not appropriate, so this species
was simply neglected. This has no impact on the results,
since CO is only spectroscopically active in the short wave
HIRS channels (mostly Channels 13 and 14), but has no
transitions within the thermal HIRS channels.

ARTS was used to simulate HIRS measurements for five
different viewing angles for the 1000 selected Chevallier
scenarios. Both WMRF simulations and high resolution
reference simulations were done. The WMRF simulations
use on average 17 frequency grid points per channel, the
reference simulations 3827. The total run time on Intel
Core2 8-core CPUs was approximately 6 min for the
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WMRF simulations, and 150 h for the reference simula-
tions. (These run times include the line-by-line calcula-
tion of absorption coefficient tables, which is done once at
the beginning of each batch run. The fast calculation was
done in a single batch run, the reference calculation was
broken down into 10 batch runs so that it could be run on
a computer cluster.)

Fig. 9 summarizes the results of this exercise. It shows
for each channel the mean and the standard deviation of
the difference between fast calculation and reference
calculation, taken over the 1000 atmospheric cases and all
viewing angles. Differences for most channels are small,
below 0.05 K. Only for Channel 1 the mean difference is as
large as 0.3 K. The reason for this discrepancy is that this
channel has a very high opacity (compare Fig. 2), so that it
receives radiation from the upper stratosphere. The
Garand and Chevallier profiles are less consistent at
these high altitudes than at lower altitudes.
3.5. Jacobians

The ARTS program can calculate analytical or semi-
analytical Jacobians for various quantities, such as trace
gas concentrations or temperature [3]. Each monochro-
matic radiance can be accompanied by monochromatic
Jacobians, which are subject to the same post processing
as the radiances, in order to simulate instrument antenna
pattern and frequency response. In this context, it is
interesting whether the selected WMRF frequency grid is
suitable for Jacobian calculation, in addition to radiance
calculation.
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To check this we examine the Jacobians for water
vapor for the first of the Garand scenarios. The left plot in
Fig. 10 shows the Jacobians as calculated on the reference
grid (solid curves) and on the WMRF grid (circles). Only
HIRS channels sensitive to water vapor are shown. On first
sight the agreement between fast and reference
calculations appears excellent.

For a closer look, the right plot in Fig. 10 shows the
relative difference ((fast-reference)/reference in percent).
This plot reveals that at altitudes where Jacobians are
small, relative differences approach 100%.

This result is not completely unexpected. Implicitly,
the WMRF grid is optimized to represent those altitudes
where changes have the strongest impact on the
radiances. (Since the grid is selected to minimize the
radiance error.) These are the altitudes where Jacobians
are large. Frequencies, that represent altitudes where the
Jacobian is small, tend to be optimized away.

One can conclude that the WMRF method as
presented here is suitable for Jacobian calculations
only if large relative errors outside the Jacobian peak
area are acceptable. This issue should not be a problem
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for most retrieval algorithms, but the user should be
aware of it.

A possible solution to get precise Jacobians throughout
would be to include the Jacobians in the cost function
(Eq. (3)) for the simulated annealing algorithm. However,
this has obvious drawbacks: Firstly, it is expected to lead
to a larger number of frequencies in the WMRF grid
(for the same radiance accuracy). Secondly, different
Jacobian species would have to be taken into account for
the different instrument channels, since not all species are
active in each channel.

3.6. WMRF versus correlated k

A quantitative comparison of the new method
to a traditional correlated k method is beyond the scope
of this article. However, a few qualitative remarks are in
order.

The WMRF method was shown to give good calcula-
tion accuracy at significantly reduced computational cost,
compared to reference calculations. On theoretical
grounds, we believe it to yield a speed increase that is
at least comparable to a traditional correlated k method,
but we have not shown this explicitly.

It is likely that for most users practical considerations
drive the decision on what method to use. Compared to
the correlated k method and the pseudo-k method, our
new method has the advantage that the procedure is
completely automatic. However, it has the disadvantage
that the simulated annealing procedure requires consid-
erable computation time. The calculation of high resolu-
tion reference spectra also requires considerable
computation time, but is necessary for both methods.

4. Summary, conclusions, and outlook

We presented a method to efficiently simulate broad-
band IR radiometer measurements. It uses two basic
ideas. Firstly, the channel radiance can be approximated
by a weighted mean of the radiance at some representa-
tive frequencies, where the weights can be determined by
linear regression. (We term this the Weighted Mean
of Representative Frequencies (WMRF) approximation.)
Secondly, a set of representative frequencies can be found
by simulated annealing.

The method was shown to yield good accuracy (better
than 0.05 K) with only few representative frequencies
(5–22 per HIRS channel).

Representative frequencies and weights for the HIRS
instrument are available under a GNU public license as
part of the ARTS radiative transfer program at http://
www.sat.ltu.se/arts/. Currently included are data for the
instruments on TIROS N, NOAA 6–19, and Metop A. We
plan to add further instruments, as their characteristics
become available.

The optimization method itself was implemented as
a set of simple Matlab functions. The only inputs
required are instrument channel response characteris-
tics, and high resolution reference spectra for a set of
atmospheric scenarios. Hence, the functions can be used
together with any radiative transfer program, and for
any sensor with broadly similar characteristics as HIRS.
The method should also be suitable for fast radiation
flux or cooling rate calculations, but we have not yet
tried this.

The functions are distributed under a GNU public
license as part of the Atmlab software package, and can be
downloaded from http://www.sat.ltu.se/arts/tools/.

An interesting open issue is, whether the presented
method performs equally well for the calculation of
cloudy spectra, as for the investigated clear sky spectra.
Intuitively we believe so, but it has not yet been
demonstrated. To study this is beyond the scope of the
present article, since we are lacking at the moment a good
set of high resolution reference calculations for a diverse
set of atmospheric states. This issue will be the subject of
further study.

http://www.sat.ltu.se/arts/
http://www.sat.ltu.se/arts/
http://www.sat.ltu.se/arts/tools/
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[27] Müller SC, Kämpfer N, Feist DG, Haefele A, Milz M, Sitnikov, N, et al.
Validation of stratospheric water vapour measurements from the
airborne microwave radiometer AMSOS. Atmos Chem Phys
2008;8:3169–83.

[28] Fiorucci I, Muscari G, Bianchi C, Girolamo PD, Esposito F,
Grieco G, et al. Measurements of low amounts of precipi-
table water vapor by millimeter wave spectroscopy: an intercom-
parison with radiosonde, Raman lidar, and Fourier trans-
form infrared data. J Geophys Res 2008;113:D14314, doi:10.1029/
2008JD009831.

[29] Harlow RC. Airborne retrievals of snow microwave emissivity at
AMSU frequencies using ARTS/SCEM-UA. J Appl Meteorol Clim
2007;46:23–35. doi: 10.1175/JAM2440.1.

[30] Adams IS, Gaiser P, Jones WL. Simulation of the Stokes vector in
inhomogeneous precipitation. Radio Sci 2008;43:RS5006, doi:10.
1029/2007RS003744.

[31] Smith WL, Woolf HM, Hayden CM, Wark DQ, McMillin LM. The
TIROS-N operational vertical sounder. Bull Am Meteorol Soc
1979;60:1177–87.

[32] Eriksson P, Ekstroem M, Melsheimer C, Buehler SA. Efficient
forward modelling by matrix representation of sensor responses.
Int J Remote Sensing 2006;27(9–10):1793–808. doi: 10.1080/
01431160500447254.

[33] Goody R, West R, Chen L, Crisp D. The correlated-k method for
radiation calculations in nonhomogeneous atmospheres. J Quant
Spectrosc Radiat Transfer 1989;42:539–50.

[34] Lacis AA, Oinas V. A description of the correlated k distri-
bution method for modeling nongray gaseous absorption, thermal
emission, and multiple scattering in vertically inhomogeneous
atmospheres. J Geophys Res 1991;96:9027–63.

dx.doi.org/10.1016/j.jqsrt.2004.05.051
10.1029/2004JD005140
10.1029/2004JD005140
10.1029/2004RS003110
10.1029/2005JD006552
10.1029/2005JD006552
10.1029/2006JD007088
10.1029/2005GL022681
10.1029/2005GL022681
dx.doi.org/10.1007/s10874-005-7185-9.3d
dx.doi.org/10.1016/j.jms.2004.09.014
dx.doi.org/10.1016/j.jqsrt.2004.03.012
dx.doi.org/10.1016/j.jqsrt.2004.03.012
10.1029/2004GL021214
10.1029/2004GL021214
10.1029/2004JD005111
dx.doi.org/10.1109/TGRS.2008.918013
dx.doi.org/10.1109/TGRS.2008.918013
dx.doi.org/10.1002/qj.143
dx.doi.org/10.1002/qj.134
dx.doi.org/10.1002/qj.151
10.1029/2002RS002638
dx.doi.org/10.1111/j.1365-2966.2007.11464.x
dx.doi.org/10.1016/j.jqsrt.2005.11.001
dx.doi.org/10.1256/qj.05.70
10.1029/2007RG000233
10.1029/2007RG000233
dx.doi.org/10.1109/TGRS.2004.840660
10.1029/2008JD009831
10.1029/2008JD009831
dx.doi.org/10.1175/JAM2440.1
10.1029/2007RS003744
10.1029/2007RS003744
dx.doi.org/10.1080/01431160500447254.3d
dx.doi.org/10.1080/01431160500447254.3d


ARTICLE IN PRESS

S.A. Buehler et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 111 (2010) 602–615 615
[35] Mlawer EJ, Taubman SJ, Brown PD, Iacono MJ, Clough SA. Radiative
transfer for inhomogeneous atmospheres: RRTM, a validated
correlated-k model for the longwave. J Geophys Res 1997;102:
16663–82.

[36] Wiscombe WJ, Evans JW. Exponential-sum fitting of radiative
transfer functions. J Comp Phys 1977;24:416–44.

[37] Garand, L, et al. Radiance and Jacobian intercomparison of radiative
transfer models applied to HIRS and AMSU channels. J Geophys Res
2001;106(D20):24017–31.
[38] Chevallier F, Di Michele S, McNally AP. Diverse profile datasets
from the ECMWF 91-level short-range forecasts. Technical Report,
NWP SAF Satellite Application Facility for Numerical Weather
Prediction, Document No. NWPSAF-EC-TR-010, Version 1.0, 2006.


	Efficient radiative transfer simulations for a broadband infrared radiometer--Combining a weighted mean of representative frequencies approach with frequency selection by simulated annealing
	Introduction
	Methodology
	The ARTS model
	The HIRS instrument
	Broadband infrared radiative transfer simulations
	The correlated k method
	The weighted mean of representative frequencies (WMRF) approximation
	Simulated annealing
	Example case HIRS

	Results and discussion
	Annealing algorithm performance
	Example results for HIRS channel 12
	Operational optimization runs
	Error analysis and test of generality
	Jacobians
	WMRF versus correlated k

	Summary, conclusions, and outlook
	Acknowledgments
	References




