
Qpack2 – atmospheric retrievals by OEM in Matlab

Patrick Eriksson
(patrick.eriksson@chalmers.se)

August 17, 2011

1 Scope

Qpack2 is a retrieval system, implemented in Matlab, for performing inversions of atmo-
spheric observations inside the framework of “optimal estimation” (OEM). So far, only
cases where the aim is to retrieve vertical profiles of atmospheric quantities (1D cases)
are handled. Accordingly, the present main application areas of Qpack2 are ground-based
observations and inversion of individual satellite spectra/scans. Inversion of satellite scan-
ning sequences where atmospheric fields to be retrieved have also a latitude or longitude
extension (2D or 3D) could be considered as part of future development.

The package should be general and flexible for covered measurements. For example,
there is basically no limitations regarding observation geometry. Further, Qpack2 has been
developed to be suitable for operational inversions, as long as not most extreme calculation
speed is required. Some important aspects here are that batch calculations are allowed
and atmospheric a priori profiles can automatically be extracted from climatology data.

2 Background and introduction

Qpack2 is part of the more general Atmlab package of Matlab functions. In fact, it is
largely a merge of some of the systems in Atmlab. The computational engine, i.e. the
forward model, of Qpack2 is ARTS-2 (not part of Atmlab). The communication with
ARTS-2 is made through the Qarts system. OEM inversions are performed by the function
oem.m. Climatology data are stored and interpolated through the atmdata format.

This can be seen as a direct successor of Qpack (Eriksson et al., 2005), despite all
code is written from scratch. However, for both Qpack versions the computations are
controlled by a set of settings fields packed into a structure denoted as Q (though Qpack2
has also a structure O). Qpack was built around ARTS-1, this new Qpack version is
mainly a consequence of that ARTS-2 is the maintained version of ARTS. (ARTS-2 is
below just denoted as ARTS.) This gave also an opportunity to make a more stringent
implementation and to add some features. This should hopefully make it easier to maintain
and extend Qpack2. Data formats are now more clearly defined and the ambition level
around documentation is higher (but still modest). A main improvement compared to
Qpack is that extraction of a priori data from climatology data is now an integrated part.
On the other hand, the feature of classifying errors into different categories (0-3 in Qpack)
and the associated plotting features are removed as it was hardly used.

Quality checks are not handled by Qpack2. For example, there is no default check that
the frequencies of the measurements are as expected. This for efficiency reasons and the
fact that such checks are hard to make in a totally general manner. Checks are left for
accompanying dedicated functions, such as qp2_check_f.

1

3 Software and installation

The needed software packages are ARTS and Atmlab. The simplest is to obtain and update
these packages through svn. Download instructions for ARTS are found at www.sat.ltu.
se/arts/getarts. The installation details are here not repeated. A plain installation of
ARTS suffices.

Download options for Atmlab are found at www.sat.ltu.se/arts/tools. The file
CONFIGURE (found in the top folder) gives instructions for how to get started with
Atmlab. Qarts2 demands that several “atmlab settings” are activated. This is handled
by the function atmlab. A description of all atmlab settings is obtained by:

>> help atmlab

At least the following atmlab settings are used: ARTS_PATH, ARTS_INCLUDES, FMODEL_VERBOSITY,
VERBOSITY and WORK_AREA. Some example settings:

atmlab(’ARTS_PATH’, fullfile(homedir,’ARTS/arts/src/arts’));

atmlab(’ARTS_INCLUDES’, fullfile(homedir,’ARTS/arts/includes’));

atmlab(’FMODEL_VERBOSITY’, 0);

atmlab(’VERBOSITY’, 1);

atmlab(’WORK_AREA’, ’/tmp’);

The standard choice is to place these calls of atmlab in atmlab_conf.m, as described in
CONFIGURE.

4 Documentation

The overall documentation is found in this document. The detailed information is mainly
stored in the implementation files. Information on individual functions is obtained by the
standard Matlab help command. For example:

>> help oem

Some of the used data structures are documented matching the requirements of qinfo.m.
For example, to list all fields and the documentation text of Qarts’ Q:

>> qinfo(@qarts)

The documentation for a specific field is obtained as

>> qinfo(@qarts,’F_BACKEND’)

Wildcards are allowed when defining fields:

>> qinfo(@qarts,’ABS_*’)

Details around development and bug fixes are described in the ChangeLog file of Qpack2
(atmlab/retrieval/qpack2/ChangeLog). The versions of Qpack2 are numbered as Qpack2.x.y,
where x is increased when a change can not be accommodated with backward compatibility
and y is increased for each change/commit.

5 Overview

A retrieval by Qpack2 has three main steps:

% 1: Define forward model and retrieval settings

[Q,O] = my_q_fun;

% 2: Import the measurement data to be inverted

Y = my_y_fun;

% 3: Perform the inversion

L2 = qpack2(Q, O, Y);

The variables Q, O, Y and L2 are all structures, and the fields of these structures are
described in Section 6.

The main part of the settings defined in step 1 are found in Q, that match directly the
Q of the Qarts interface to ARTS. All forward model variables are part of Q, and retrieval
variables such as grids and a priori data are also defined in Q. The exceptions are settings
directly associated with OEM, that are stored in O. This division reflects the fact that the
OEM operations are made by a stand-alone function. This function, oem, is implemented
in a general manner, to be applicable for any retrieval case as long as an interface to a
“forward model” is provided.

The measurement data structure Y can be an array. That is, a series of observations
can be inverted in a single call of qpack2, on the condition that a Q and O are valid for all
observations. This implies e.g. that basic sensor characteristics such as backend frequencies
must be common for all the data cases in Y. On the other hand, both observation position
and direction can differ between the observations, and the data from e.g. an aircraft flight
could be inverted in a single run.

The usage of the (dummy) functions my_q_fun and my_y_fun in steps 1 and 2 is just
a suggestion for how to organise the definition phase of the run, but it is probably a good
idea to separate the inversion settings and the task of importing measurement data.

When Q, O and Y are created, it is just to call qpack2, and everything should work
automatically. The input of qpack2 is fixed (throughout Q, O and Y). The output is
normally the result of the retrieval, packed as a “level 2” data structure (L2). The function
can also provide simulated measurements. This option is triggered by setting the spectrum
field to be empty (if Y is an array, this must be done for elements):

...

Ye.Y = [];

Ysim = qpack2(Q, O, Ye);

The output is a copy of Ye, with the field Ysim.Y set to the result of the forward model
run. The simulated data match the a priori state of the retrieval set-up.

A full example is found in the file qpack2_demo (placed in the folder demos). The
example works with simulated data, created by qpack2 itself. The example file is also
appended to this document as Appendix A. A related example is arts_oem_demo. It does
not use Qpack2, but shows how an OEM inversion is performed with ARTS as the forward
model, and the calculation steps in this example gives a good view of the inside of Qpack2.

6 Main data structures

6.1 Forward model and retrieval settings

6.1.1 General features

Forward model parameters and most retrieval variables are joined into a single structure,
denoted as Q. This structure has a fixed set of fields. That is, the structure must always
contain exactly this set of fields. However, some fields are used only in particularly cir-
cumstances and not all fields must be set. A field of Q is flagged as undefined by setting it
to {}, and e.g. [] is taken as an active selection. This applies also to structures O and Y.

The structure Q of Qpack2 is identical to the Q of Qarts. Qpack2 makes only slight
modifications of Q before it is given to Qarts. The Qarts system is primarily an interface
to the ARTS forward model, on the same time as retrieval variables can be defined in a
relatively general manner. However, Qarts is not a complete retrieval system, it just allows
definition of retrieval variables in parallel with the forward model data. The ambition is
just to provide the basis for retrieval systems, such as Qpack2 or streamlined software
dedicated to a single sensor.

Qarts is documented through the qinfo feature:

>> qinfo(@qarts)

The call of qinfo above provides a description of all defined fields (Sec. 3) and this
information is also found here as Appendix B. It is recommended to initialise Q as

Q = qarts;

This ensures that Q contains all defined fields, also ones introduced more lately. If any
field is added to Q, it shall not change the result of older setting files. If a needed addition
can not be accommodated with backward compatibility, this generates a new version of
Qarts.

All features of ARTS can be accessed through Qarts. Calculations of standard type
can largely be handled by defining the fields of Qarts that have a direct matching ARTS
workspace variables (WSV). That is, the name is the same in Qarts and ARTS, beside that
Qarts use uppercase for its fields and ARTS lowercase for its variables (e.g. Z_SURFACE and
z_surface, respectively). Qarts has also several fields that allow inclusion of workspace
method (WSM) calls. Some of these fields match ARTS agendas and have then a dedicated
purpose (e.g. SURFACE_PROP_AGENDA). There are also fields where you are free to include
any set of WSM calls (e.g. WSMS_BEFORE_RTE). You can also use ARTS’s include feature
through the field INCLUDES.

Accordingly, Qarts is a relatively clean and open interface to ARTS, and to set-up
a calculation demands primarily an understanding of ARTS. Built-in documentation of
ARTS WSMs and WSVs is obtained in a terminal as

$ arts -d z_surface

or from within Matlab as

>> arts(’-d z_surface’);

See the documentation of ARTS for more in-depth documentation.
The best introduction to the practical usage of ARTS is obtained through the con-

trol file examples found in ARTS’s folder tests. For an introduction of the usage of
ARTS through Qarts, there are several example scripts in Atmlab’s folder demos, such as
qarts_demo.

6.1.2 Qpack2 specifics

Most fields of Q can be unspecified ({}), but Qpack2 handles some fields in special way:

• Q.ATMOSPHERE_DIM must be set to 1.

• Q.R_GEOID must be set.

• Q.RAW_ATMOSPHERE must be unset ({}).

• The fields T_FIELD, VMR_FIELD and Z_FIELD are ignored. These fields are set by
Qpack2 by the corresponding “atmdata”-fields.

• Q.ABS_SPECIES.ATMDATA must be set.

• Q.T.ATMDATA must be set.

• Q.Z_ATMDATA is optional. If not set, geometrical altitudes of the pressure levels (the
WSV z_field) are found by applying hydrostatic equilibrium using Y.HSE_P and
Y.HSE_Z (Sec. 6.3). This later option demands that Q.HSE.ON is true.

• Q.HSE_P is set to Y.HSE_P. Other fields of Q.HSE must be set by the user, thus
including an active choice for Q.HSE.ON.

• Q.ABSORPTION must be set. The option ’CalcTable’ is not allowed (as it is difficult to
ensure generation of good absorption tables in a general manner). You must either
use ’OnTheFly’ or create an absorption table as a pre-calculation (the ’LoadTable’
option).

• Q.TNOISE_C must be set.

• The a priori knowledge covariance matrix (Sx) is created by arts_sx and the SX

sub-fields of the retrieval quantities must be set.

6.2 OEM settings

Settings directly associated with OEM are put into the structure O. Also this setting
structure is documented through qinfo (see also Appendix C):

>> qinfo(@oem)

Many of the fields of O controls the output of the oem function. For Qpack2 you do not
need to set these fields manually. The output required to provide the specified L2 data
(Section 6.4) is ensured by initialising O as

O = qp2_l2(Q);

Some fields of O are also set by Qpack2, and user settings are overwritten. These fields
are:

• O.msg

• O.sxnorm

For linear inversion, a single active setting is needed:

O.linear = true;

6.3 Measurement data

The series of measurements (spectra or scans) to be treated is packed into a data structure
denoted as Y. The data fields of this structure are described in qp2_y, following the qinfo

format:

>> qinfo(@qp2_y)

The same information is appended to this document in Appendix D. An example:

>> Y(3)

ans =

DAY: 3

F: [800x1 double]

HOUR: 11

HSE_P: 10000

HSE_Z: 1.5677e+04

LATITUDE: 57.4000

LONGITUDE: 11.9300

MINUTE: 57

MONTH: 3

SECOND: 58.0000

TNOISE: 0.0243

Y: [800x1 double]

YEAR: 2002

ZA: 65

Z_PLATFORM: 5

The simplest way to initialise Y is to use qp2_y as

for i = 1 : n

Y(i) = qp2_y;

load(file{i})

Y(i).Y = ...

end

6.4 Retrieved data

Retrieved data are returned as a structure array L2. The fields of L2 are not fixed, the set
of returned fields depend on settings in Q. This makes it impossible to use qinfo here (as
for Q and Y), and the fields are instead described below in this document.

The only mandatory field of L2 is converged. The remaining content of L2 is con-
trolled by the Qarts field L2_EXTRA and the L2 sub-field for the retrieval quantities (e.g.
Q.POLYFIT.L2). As an example on a complete L2, the first element of the output of
qpack2_demo is (the polyfit part is truncated):

>> L2(1)

ans =

year: 2008

month: 2

day: 25

hour: {}

minute: {}

second: {}

converged: 1

dx: 4.4374e-06

cost: 1.0748

cost_x: 5.8390e-04

cost_y: 1.0742

f: [1279x1 double]

y: [1279x1 double]

yf: [1279x1 double]

bl: [1279x1 double]

p_grid: [45x1 double]

t_field: [45x1 double]

z_field: [45x1 double]

species1_name: ’O3’

species1_p: [45x1 double]

species1_xa: [45x1 double]

species1_x: [45x1 double]

species1_e: [45x1 double]

species1_eo: [45x1 double]

species1_es: [45x1 double]

species1_mr: [45x1 double]

ffit_xa: 0

ffit_x: -3.8104e+03

ffit_e: 8.7798e+03

ffit_eo: 8.6418e+03

ffit_es: 1.5504e+03

ffit_mr: 0.9692

polyfit0_xa: 0

polyfit0_x: 0.0516

polyfit0_e: 0.4748

polyfit0_eo: 0.0967

polyfit0_es: 0.4649

polyfit0_mr: 0.7745

polyfit1_xa: 0

polyfit1_x: -0.0022

polyfit1_e: 0.0097

polyfit1_eo: 0.0094

polyfit1_es: 0.0023

polyfit1_mr: 0.9996

...

A description of the options for Q.L2_EXTRA is obtained by:

>> help qp2_l2

Further comments and description of fields directly associated with specific retrieval quan-
tities are found below (no ambition of completeness here).

6.4.1 Various general fields

cost, cost_x and cost_y:
Cost values of retrieved state and fit to measurement. See further oem.m.

P.year, P.month, P.day, P.hour, P.minute, and P.second:
The time of the measurement.

P.latitude and P.longitude:
The geographical position of the measurement.

tnoise:
Mean of assumed thermal noise. This is simple average, no weighting with channel widths
is applied. This value has no direct physical meaning, but can be used as a mean to e.g.
remove the most noisy measurements (without having Y at hand).

f:
Frequency vector of measurement. Equals Y.F if set. Otherwise set Q.SENSOR_RESPONSE_F
or Q.F_GRID, depending on if a sensor is applied or not.

y:
Measured spectrum.

yf:
Fitted spectrum. That is, the spectrum matching retrieved state vector.

baseline:
Retrieved “baseline”. That is, retrieved spectrum distortion through e.g. polynomial fit-
ting. A scalar 0 if no baseline retrieval is performed.

converged:
Convergence flag. See further oem.m.

dx:
Change in the state vector x between each iteration. See further oem.m.

6.4.2 Background atmospheric state

p_grid, (lat_grid, lon_grid), t_field and z_field:
As the ARTS workspace variables with the same name. The data are identical to the ones
that are provided to the forward model. (If temperatures are retrieved, this information
is used. Otherwise returned data match climatology temperatures.)

6.4.3 Retrieved species

The retrieved species are indexed after the order they are specified in Q and named as
species1, species2 . . . A number of fields is returned for each species. The field names
below are valid for species 1. If two species are retrieved there is also a field named as
species2_name etc.

The unit of output follows Q.SPECIES(i).UNIT. For example, if the selected unit is
rel, the provided a priori profile is a vector of ones and the retrieved profile values in the
order of 1. The justification is to return data that are fully consistent with the assumptions
of the retrieval. This point is most critical for the logrel case, where the returned data
theoretically have a normal distribution while converted to VMR it would be log-normal.
However, using logrel can cause substantial non-linearity in the retrieval problem and
it is likely that the errors not follow normal distributions. Anyhow, L2 data of rel and

logrel type can be converted to VMR by the function qp2_rel2vmr (see further help text
of the function).

These set of fields are available:

species1_name:
Tag name of species.

species1_p:
Vertical/pressure retrieval grid for the species.

species1_x:
Retrieved profile. Unit depends on Q.SPECIES(i).UNIT.

species1_xa:
A priori state for the species. Unit depends on Q.SPECIES(i).UNIT.

species1_e:
Total retrieval (observation + smoothing) error for the species. Unit depends on Q.SPECIES(i).UNIT.

species1_eo:
Observation error for the species. Unit depends on Q.SPECIES(i).UNIT.

species1_es:
Smoothing error for the species. Unit depends on Q.SPECIES(i).UNIT.

species1_mr:
Measurement response for the species. This is the sum of the rows of species_A (see
below).

species1_A:
The species specific averaging kernels. That is, this is the diagonal centred sub-matrix
covering only the resolution between changes of the species at different altitudes. The
resolution between variables of different retrieval quantities is thus not covered.

species1_vmr0:
Added automatically if the retrieval unit is rel or logrel, to be used to convert data to
VMR. For example, the retrieved profile in VMR for the rel case is x.*vmr0.

6.4.4 Baseline fit variables

There is so far only a single main approach for baseline fits, POLYFIT. A set of fields is
added for each polynomial coefficient, and for the first polynomial coefficient they are

P.polyfit0_x, P.polyfit0_xa, P.polyfit0_e, P.polyfit0_eo, P.polyfit0_es and
P.polyfit0_mr:
As corresponding fields above for species (species1_x etc.).

6.4.5 Frequency fit variables

If only a “frequency shift” retrieval is performed, the fields listed below hold scalars. If
also a “stretch fit” is made, the fields are vectors of length 2. The set of fields are:

P.ffit_x, P.ffit_xa, P.ffit_e, P.ffit_eo, P.ffit_es and
P.ffit_mr:
As corresponding fields above for species (species1_x etc.).

7 Data types and file formats

7.1 Qpack2 variables

The data types in Qpack2 (and in Qarts) follow largely ARTS. Regarding basic data types,
there are two main things to consider. Firstly, a distinction is made between the logical
0 and 1, and the integers 0 and 1. Accordingly, booleans, sometime also denoted as flags,
must be set to true or false. Secondly, vectors are demanded to be columns.

A notable feature of Qpack2 and Qarts is that data fields, booleans and scalars ex-
cluded, can either be set directly or be set to the name of a file (including data of the
expected type). Both these settings are possible

Q.F_GRID = [501.18e9 : 1e6 : 501.58e9]’;

Q.F_GRID = ’f_odinsmr_ac2a.xml;

Note the transpose in the first case (to create a column vector).
The fields Q.ABS_SPECIES.ATMDATA, Q.T.ATMDATA and Q.Z_ATMDATA are intended for

data of climatology character. The data format used here is called atmdata. The format
is similar to the GriddedField format in ARTS, but has also fields for e.g. units. The
atmdata format is based on the general gformat:

>> help gformat

For a description of the specialities of atmdata:

>> help isatmdata

For example, the MSIS temperature climatology found in arts-xml-data is stored as Grid-
dedField4 but imported as

Q.T_ATMDATA = gf_artsxml(fullfile(arts_xmldata_path, ’climatology’, ...

’msis90’, ’msis90.t.xml’), ’Temperature’, ’t_field’);

data of atmdata type are obtained:

>> Q.T_ATMDATA

ans =

TYPE: ’atmdata’

NAME: ’Temperature’

SOURCE: [1x65 char]

DIM: 4

DATA: [4-D double]

DATA_NAME: ’Temperature’

DATA_UNIT: ’K’

GRID1: [141x1 double]

GRID1_NAME: ’Pressure’

GRID1_UNIT: ’Pa’

GRID2: [19x1 double]

GRID2_NAME: ’Latitude’

GRID2_UNIT: ’deg’

GRID3: 0

GRID3_NAME: ’Longitude’

GRID3_UNIT: ’deg’

GRID4: [13x1 double]

GRID4_NAME: ’doy’

GRID4_UNIT: ’’

7.2 File formats

The standard format for data input files is “ARTS xml”. These files are hardly cre-
ated by hand, but stored from Matlab (through xmlStore) or from ARTS (through
WriteXML). If ARTS is compiled with support for NetCDF, that format can also be used
(arts_nc_write_datatype and WriteNetCDF, respectively).

References

Eriksson, P., C. Jiménez, and S. A. Buehler, Qpack, a general tool for instrument simula-
tion and retrieval work, J. Quant. Spectrosc. Radiat. Transfer, 91, 47-64, 2005.

Appendices

A An example script

% QPACK2_DEMO Demonstration of the Qpack2 retrieval system

%

% The main features of Qpack2 are demonstrated. The example case is airborne

% measurements of ozone at 110.8 GHz. Synthetic measurement data are

% generated internally. See the code and intrnal comments for details.

%

% Everything is here put into a single file. For practical retrievals it

% is probably better to put the definitions of Q (together with O?) in a

% separate function (i.e. [Q,O] = q_mycase). A function to import

% measurement data into the "Y format" (see *qp2_y*) is needed. The

% retrieval result is returned in the L2 format produced by *qp2_l2*.

%

% FORMAT L2 = qpack2_demo

%

% OUT L2 L2 data output from *qpack2*.

% 2010-05-12 Created by Patrick Eriksson.

function L2 = qpack2_demo

%- Qarts settings

%

Q = q_demo; % Local file, found below

%- Measurement data

%

Y = y_demo(Q); % Local file, found below

%- Check that all frequencies are OK

%

if ~qp2_check_f(Q, Y, 1e3);

error(’Some mismatch between Q.F_BACKEND and frequencies of spectra.’);

end

%

[Y.F] = deal({}); % The field F is now obselete. {} is used inside

% qarts and qpack2 to flag undefined fields

%- OEM variables

%

O = qp2_l2(Q); % This ensures that OEM returns the varibles needed

% to fill the L2 structure, as defined in Q

O.linear = false;

%

if ~O.linear

O.itermethod = ’GN’;

O.stop_dx = 0.01;

O.maxiter = 5;

end

%- Make inversion

%

L2 = qpack2(Q, O, Y);

%- Plot, if no output argument

%

if ~nargout

plot(L2(1).species1_x*1e6, p2z_simple(L2(1).species1_p)/1e3, ’b’, ...

L2(2).species1_x*1e6, p2z_simple(L2(2).species1_p)/1e3, ’r’, ...

L2(1).species1_xa*1e6, p2z_simple(L2(1).species1_p)/1e3, ’k-’);

xlabel(’Ozone [VMR]’);

ylabel(’Approximate altitude [km]’);

legend(’Retrieval 1’, ’Retrieval 2’, ’True and a priori’);

end

return

%---

%---

%---

function Q = q_demo

%- Atmlab settings

%

arts_xmldata_path = atmlab(’ARTS_XMLDATA_PATH’);

arts_includes = atmlab(’ARTS_INCLUDES’);

if isnan(arts_xmldata_path)

error(’You need to set ARTS_XMLDATA_PATH to run this exmaple.’);

end

if isnan(arts_includes)

error(’You need to ARTS_INCLUDES to run this example.’);

end

%

fascod = fullfile(arts_xmldata_path, ’atmosphere’, ’fascod’);

%- Init Q

%

Q = qarts;

%- General

%

Q.INCLUDES = { fullfile(arts_includes, ’general.arts’), ...

fullfile(arts_includes, ’continua.arts’) };

Q.ATMOSPHERE_DIM = 1;

Q.STOKES_DIM = 1;

Q.J_DO = true;

Q.CLOUDBOX_DO = false;

%- Radiative transfer

%

Q.Y_UNIT = ’RJBT’;

Q.YCALC_WSMS = { ’yCalc’ };

%

Q.PPATH_LMAX = 250;

Q.PPATH_STEP_AGENDA = { ’ppath_stepGeometric’ };

%- Surface

%

Q.R_GEOID = constants(’EARTH_RADIUS’);

Q.Z_SURFACE = 5e3; % Just a dummy value. A 10 km

% observation altitude is assumed here

%- Absorption

%

Q.ABS_LINES = fullfile(atmlab_example_data, ’o3line111ghz’);

Q.ABS_LINES_FORMAT = ’Arts’;

%

Q.ABSORPTION = ’OnTheFly’;

Q.ABS_NLS = [];

%- Pressure grid

%

z_toa = 95e3;

%

Q.P_GRID = z2p_simple(Q.Z_SURFACE-1e3 : 250 : z_toa)’;

%- Frequency, spectrometer and pencil beam antenna

%

% The hypothetical spectrometer has rectangular response functions

%

Q.F_GRID = qarts_get(fullfile(atmlab_example_data , ...

’f_grid_111ghz.xml’));

%

H = qartsSensor;

%

H.SENSOR_NORM = true;

%

df = 0.5e6;

H.F_BACKEND = [min(Q.F_GRID)+df : df : max(Q.F_GRID)-df]’;

%

B.name = ’Spectrometer channel response function’;

B.gridnames = { ’Frequency’ };

B.grids = { [-df/2 df/2] };

B.dataname = ’Response’;

B.data = [1 1];

%

H.BACKEND_CHANNEL_RESPONSE{1} = B;

clear B

%

Q.SENSOR_DO = true;

Q.SENSOR_RESPONSE = H;

%

Q.ANTENNA_DIM = 1;

Q.MBLOCK_ZA_GRID = 0;

%- Correlation of thermal noise

%

f = H.F_BACKEND;

cl = 1.4 * (f(2) - f(1));

cfun = ’gau’;

cco = 0.05;

%

Q.TNOISE_C = covmat1d_from_cfun(f, [], cfun, cl, cco);

%

clear H f

%- Define L2 structure (beside retrieval quantities below)

%

Q.L2_EXTRA = { ’cost’, ’dx’, ’xa’, ’y’, ’yf’, ’bl’, ’ptz’, ’mresp’, ’A’, ...

’e’, ’eo’, ’es’, ’date’ };

%- Temperature

%

Q.T.RETRIEVE = false;

Q.T.ATMDATA = gf_artsxml(fullfile(arts_xmldata_path, ’climatology’, ...

’msis90’, ’msis90.t.xml’), ’Temperature’, ’t_field’);

%- Determine altitudes through HSE

%

Q.HSE.ON = true;

Q.HSE.P = 1013;

Q.HSE.ACCURACY = 0.1;

%- Species

% Ozone, only species is retrieved here

Q.ABS_SPECIES(1).TAG = { ’O3’ };

Q.ABS_SPECIES(1).RETRIEVE = true;

Q.ABS_SPECIES(1).L2 = true;

Q.ABS_SPECIES(1).GRIDS = { z2p_simple(Q.Z_SURFACE+1e3:2e3:z_toa)’, [], [] };

Q.ABS_SPECIES(1).ATMDATA = gf_artsxml(fullfile(fascod, ...

’midlatitude-winter.O3.xml’), ’O3’, ’vmr_field’);

switch 1

case 1 % Constant VMR

Q.ABS_SPECIES(1).UNIT = ’vmr’;

Q.ABS_SPECIES(1).SX = ...

covmat1d_from_cfun(Q.ABS_SPECIES(1).GRIDS{1}, 1.5e-6, ...

’lin’, 0.2, 0.00, @log10) + ...

covmat1d_from_cfun(Q.ABS_SPECIES(1).GRIDS{1}, 0.3e-6, ...

’lin’, 0.5, 0.00, @log10);

case 2 % Constant rel

Q.ABS_SPECIES(1).UNIT = ’rel’;

Q.ABS_SPECIES(1).SX = ...

covmat1d_from_cfun(Q.ABS_SPECIES(1).GRIDS{1}, 0.5, ...

’lin’, 0.2, 0.00, @log10) + ...

covmat1d_from_cfun(Q.ABS_SPECIES(1).GRIDS{1}, 0.1, ...

’lin’, 0.5, 0.00, @log10);

case 3 % Mimic case 2 in vmr

Q.ABS_SPECIES(1).UNIT = ’vmr’;

Q.ABS_SPECIES(1).SX = ...

covmat1d_from_cfun(Q.ABS_SPECIES(1).GRIDS{1}, ...

[Q.ABS_SPECIES(1).ATMDATA.GRID1,...

0.5 * Q.ABS_SPECIES(1).ATMDATA.DATA],...

’lin’, 0.2, 0.00, @log10) + ...

covmat1d_from_cfun(Q.ABS_SPECIES(1).GRIDS{1}, ...

[Q.ABS_SPECIES(1).ATMDATA.GRID1, ...

0.1 * Q.ABS_SPECIES(1).ATMDATA.DATA],...

’lin’, 0.5, 0.00, @log10);

case 4 % Constant logrel

Q.ABS_SPECIES(1).UNIT = ’logrel’;

Q.ABS_SPECIES(1).SX = ...

covmat1d_from_cfun(Q.ABS_SPECIES(1).GRIDS{1}, 0.5, ...

’lin’, 0.2, 0.00, @log10) + ...

covmat1d_from_cfun(Q.ABS_SPECIES(1).GRIDS{1}, 0.1, ...

’lin’, 0.5, 0.00, @log10);

end

%- Water

%

% This generates no absorption, as linefile has no H2O lines

%

Q.ABS_SPECIES(2).TAG = { ’H2O’ };

Q.ABS_SPECIES(2).RETRIEVE = false;

Q.ABS_SPECIES(2).ATMDATA = gf_artsxml(fullfile(fascod, ...

’midlatitude-winter.H2O.xml’), ’H2O’, ’vmr_field’);

% O2 and N2 not active, to make example somewhat faster

if 0

%- Oxygen

%

Q.ABS_SPECIES(3).TAG = { ’O2-PWR93’ };

Q.ABS_SPECIES(3).RETRIEVE = false;

Q.ABS_SPECIES(3).ATMDATA = gf_artsxml(fullfile(fascod, ...

’midlatitude-winter.O2.xml’), ’O2’, ’vmr_field’);

%- Nitrogen

%

Q.ABS_SPECIES(4).TAG = { ’N2-SelfContStandardType’ };

Q.ABS_SPECIES(4).RETRIEVE = false;

Q.ABS_SPECIES(4).ATMDATA = gf_artsxml(fullfile(fascod, ...

’midlatitude-winter.N2.xml’), ’N2’, ’vmr_field’);

end

%- Frequency (shift retrieval here, shift+stretch also possible)

%

Q.FFIT.RETRIEVE = true;

Q.FFIT.DF = 50e3;

Q.FFIT.ORDER = 0;

Q.FFIT.SX = 50e3^2;

Q.FFIT.L2 = true;

Q.FFIT.RETRIEVE = true;

Q.FFIT.DF = 100e3;

Q.FFIT.ORDER = 1;

Q.FFIT.SX = [300e3^2 0;0 100e3^2];

Q.FFIT.L2 = true;

%- Polyfit

%

% A polynomial of order 3 is used for "baseline fit".

%

Q.POLYFIT.RETRIEVE = true;

Q.POLYFIT.ORDER = 3;

Q.POLYFIT.L2 = true;

Q.POLYFIT.SX0 = 1^2;

Q.POLYFIT.SX1 = 0.5^2;

Q.POLYFIT.SX2 = 0.2^2;

Q.POLYFIT.SX3 = 0.1^2;

return

%---

%---

%---

function Y = y_demo(Q)

% The data should be loaded from one or several files, but are here genereted

% by a forward model call to show how qpack2 can also be used to generate

% simulaled measurements (matching a priori assumptions).

% The simulated data model airborn measurements at two different zenith

% angles, from two nearby positions.

% Init Y

%

Y = qp2_y;

% Set a date

%

Y.YEAR = 2008;

Y.MONTH = 2;

Y.DAY = 25;

% Lat / lon

%

Y.LATITUDE = 45;

Y.LONGITUDE = exp(1);

% An airborn measurement assumed here

%

Y.Z_PLATFORM = 10.5e3;

Y.ZA = 70;

% Reference point for hydrostatic equilibrium

%

Y.HSE_P = 100e2;

Y.HSE_Z = 16e3;

% Set backend frequencies

%

Y.F = Q.SENSOR_RESPONSE.F_BACKEND;

% Thermal noise standard deviation

%

Y.TNOISE = 0.05;

% Simulate a measurement

%

Y.Y = []; % A flag to tell qpack2 to calculate the

% spectrum ({} signifies undefined!).

% Add a second measurement

%

Y(2) = Y(1);

%

Y(2).LONGITUDE = pi;

Y(2).ZA = 45;

% Calculate simulated spectra

%

Y = qpack2(Q, oem, Y); % Dummy oem structure OK here

% Add thermal noise

%

% The correlation specified in Q is included

%

for i = 1 : length(Y)

Y(i).Y = Y(i).Y + Y(i).TNOISE * make_noise(1,Q.TNOISE_C);

end

% Add a constant "baseline shift" for measurement 2

%

Y(2).Y = Y(2).Y + 1;

B The fields of Q

ABSORPTION:

String describing how absorption shall be calculated/obtained.

Existing options are:

{} : Absorption variables defined by include files. All

absorption fields below will be ignored.

’OnTheFly’ : Absorption is calculated for each propagation path

point. The agenda *abs_scalar_gas_agenda* must here be set by an

include file. No other absorption variables need to be set.

’CalcTable’: Calculate and use an absorption look-up table. See

qarts_abstable for simple setting of needed variables.

’LoadTable’: Load and use pre-calculated absorption look-up

table, defined by field *ABS_LOOKUP*.

ABS_LINES:

The data on spectroscopic lines to use. Can be given in two

ways:

1. As a file name. All formats handled by arts can then be used.

See ABS_LINES_FORMAT. The reading is not restricted to any

frequency range.

2. As an array of line data. This option is only allowed when

ABS_LINES_FORMAT is set to ’Arts’.

ABS_LINES_FORMAT:

The format of spectroscopic data.

Possible line formats are ’Arts’, ’Hitran’, ’Jpl’ and

’Mytran2’. Note that these strings must be given exactly as stated

here (first upper case etc.).

The field can further be set to ’None’ which indicates that no

line data shall be included (the WSV *abs_lines_per_species* is

set to be empty).

ABS_LINESHAPE:

The line shape to use. The same line shape is used for all tag

groups. Shall be a string. Do "arts -d abs_lineshapeDefine" to

list valid options.

ABS_LINESHAPE_CUTOFF:

The line shape cut-off to apply. The same cut-off is used for all

tag groups. A value of -1 means no cut-off. Do "arts -d

abslineshapeDefine" for further information.

ABS_LINESHAPE_FACTOR:

The line shape normalisation factor to apply. The same factor is

used for all tag groups. Shall be a string. Do "arts -d

abs_lineshapeDefine" for valid options.

ABS_LOOKUP:

Has the same functionality as the arts WSV with the same name.

Can be given either as the name of a XML file, or as a matching

Matlab variable.

ABS_MODELS:

Control files including descriptions of absorption models to use

(called continua in arts). This shall be a series of calls of

abs_cont_descriptionAppend (call of *abs_cont_descriptionInit*

shall be included).

Given as an array of strings. The atmlab setting ARTS_INCLUDES

is recognised. A file containing standard choices is:

ARTS_INCLUDES/continua.arts

ABS_NLS:

As the arts WSV with the same name. Only needed if an absorption

look-up shall be calculated. Can be set by *qarts_abs_species*.

Can be given either as the name of a XML file, or as a matching

Matlab variable.

ABS_NLS_PERT:

As the arts WSV with the same name. Only needed if an absorption

look-up shall be calculated. See *qarts_set_abs_lookup* for simple

setting of this field.

Can be given either as the name of a XML file, or as a matching

Matlab variable. Empty ([])signifies no perturbations.

ABS_P:

As the arts WSV with the same name. Only needed if an absorption

look-up shall be calculated. See *qarts_set_abs_lookup* for simple

setting of this field.

Can be given either as the name of a XML file, or as a matching

Matlab variable.

ABS_SPECIES:

Specification of absorption species. Arts requires in many cases

that H2O and N2 are included. This is a structure array defining

species and associated retrieval variables. These sub-fields are

defined:

<TAG> Tag group data, following *arts_tgs_cnvrt*.

<ATMDATA> VMR data for the species. The input shall follow the

atmdata format, defined in *isatmdata*. The data specified here

are not directly given to arts, it can only be used to set-up

VMR_FIELD. This step is handled by *qarts_vmr_field*. The field

is accordingly not mandatory. The main usage of this field should

be to import data of climatology character. Can be given as a

variable or a file saved through *gf_save*.

<RETRIEVE> If set to true the species is retrieved. Otherwise the

species is not retrieved (what a surprise!).

<UNIT> Retrieval unit. Allowed choices are ’rel’, ’vmr’, ’nd’, and

’logrel’. For some more information:

arts -d jacobianAddAbsSpecies.

<GRIDS> Retrieval grids for the species. An array of vectors of

length 3: {p_grid,lat_grid,lon_grid}. Grids for dimensions not

used shall be empty.

<SX> Covariance matrix of a priori knowledge for the species. Size

must match the grid field. Data must match <UNIT>. A matrix, that

can be sparse.

<L2> Flag for any function creating L2 data. See comments for

L2_EXTRA. If set to true, the retrieved state for the species

will be included in the L2 output. Otherwise not. This field has

no importance if RETRIEVE is false.

<L2_RANGE> Fine tuning of L2 data ranges. The default is to store

data directly matching the retrieval grids. This is done if the

field is non-existing. This field allows you to either crop or

extend range of the L2 data. It is then a vector of length, at

least, twice the atmospheric dimensionality: [p_min p_max lat_min

lat_max lon_min lon_max] where lat_min gives the minimum latitude

to include etc.

If a given limit is inside the range covered by the corresponding

retrieval grid, this results in that the data are cropped. This

feature can be used to remove parts that are of no interest for L2

data (such as parts always having a low measurement response).

The default L2 output is not reflecting the fact that values at

end points of the retrieval grids are valid all the way to the

matching atmospheric limit. This field can also be used to

incorporate this part. If a limit is outside the retrieval grid,

the L2 data will also include the retrieved state at the specified

or the atmospheric limit (which is the closest to the retrieval

grid). In practice this signifies a duplication of end point

data.

Only retrieved profile and errors are modified. Averaging kernel,

covariance and gain matrices are kept consistent with the original

retrieval grids.

ABS_T:

As the arts WSV with the same name. Only needed if an absorption

look-up shall be calculated. See *qarts_set_abs_lookup* for simple

setting of this field.

Can be given either as the name of a XML file, or as a matching

Matlab variable.

ABS_T_PERT:

As the arts WSV with the same name. Only needed if an absorption

look-up shall be calculated. See *qarts_set_abs_lookup* for simple

setting of this field.

Can be given either as the name of a XML file, or as a matching

Matlab variable. Empty ([]) signifies no perturbations.

ABS_VMRS:

As the arts WSV with the same name. Only needed if an absorption

look-up shall be calculated. See *qarts_set_abs_lookup* for simple

setting of this field.

Can be given either as the name of a XML file, or as a matching

Matlab variable.

ABS_WSMS:

Workspace method calls to include just before calculation of

absorption.

ANTENNA_DIM:

As the arts WSV with the same name.

This field can be ignored, depending on SENSOR_RESPONSE.

ATMOSPHERE_DIM:

As the arts WSV with the same name.

BATCH:

Batch calculations. Defined by a structure, described in

qartsBatch. Type ’qinfo(@qartsBatch);’ for further information.

Batch calculations are not started automatically (in e.g.

arts_y), but must be selected specifically (most easily done by

using *arts_batch*).

CLOUDBOX_DO:

Boolean to activate the cloud box (scattering calculations), or

not.

{}: Nothing is done. Relevant data are assumed to be specified

by inclusion files.

0: Call of *cloudboxOff* is included.

1: Action follows setting of field *CLOUDBOX*.

CLOUDBOX:

Handling of cloudbox/scattering. Defined by a structure, described

in *qartsCloudbox*. Type ’qinfo(@qartsCloudbox);’ for further

information.

EMISSION_AGENDA:

As the arts WSV with the same name. WSMs are listed as an array of

strings, with possible arguments.

F_GRID:

Has the same functionality as the arts WSV with the same name.

Can be given either as the name of a XML file, or as a matching

variable.

FFIT:

Structure for specification of frequency fit retrievals. No

retrieval is made if field is empty or sub-field RETRIEVAL is set

to false. The WSM used is *jacobianAddFreqShiftAndStretch*. These

sub-fields are defined:

<RETRIEVE> Flag to activate frequency retrieval.

<DF> Size for numerical perturbation. See used WSM.

<ORDER> Order of frequency fit, max value is 1 (0=shift,

1=stretch).

<SX> Covariance matrix of a priori knowledge for frequency shift

and stretch. A 1x1 or 2x2 matrix, depending on ORDER.

<L2> Flag for any function creating L2 data. See comments for

L2_EXTRA. If set to true, the retrieved frequency fit variables

will be included in the L2 output. Otherwise not. This field has

no importance if RETRIEVE is false.

HSE:

Variables associated with hydrostatic equilibrium. A structure

with the sub-fields:

<ON> Flag to enforce hydrostatic equilibrium. If true, the WSV

*z_field*is recalculated by *z_fieldFromHSE* (note that a "first

guess" *z_field* must be provided).

<P> Pressure for reference point. Matches the WSV *p_hse*.

<ACCURACY> Calculation accuracy. Matches the WSV

z_hse_accuracy.

If the field is unset, no action is taken. Thss equals to set

Q.HSE.ON to false. Note the setting Q.T.HSE which controls the

calculation of t-jacobians. The two settings are treated as

independent, but should be set to the same value (true/false). If

the HSE is maintained during the iterations of a temperature

retrieval is controled by THIS field.

INCLUDES:

Paths to control files to be included. These files will be

included at the top of the control file, only preceded by

WSMS_AT_START. Given as an array of strings.

The atmlab setting ARTS_INCLUDES is recognised. To include the

standard arts general definition file,

select:{’ARTS_INCLUDES/general.arts’}

INPUT_FILE_FORMAT:

The file format for arts input files. That is, the format of the

files created in matlab to be read by arts. Possible options are

’binary’, and ’double’. The binary option, that is default, should

be most efficient. Use ’double’ if you want to visually inspect

the files generated. (The option ’float’ is not allowed, as this

is not always sufficient for frequency data.)

IY_CLEARSKY_AGENDA:

As the arts WSV with the same name. WSMs are listed as an array of

strings.

IY_SPACE_AGENDA:

As the arts WSV with the same name. WSMs are listed as an array of

strings, with possible arguments. See PPATH_STEP_AGENDA for a

practical example on format to use.

J_DO:

Boolean to include calculation of jacobians.

{}: Nothing is done. Relevant data are assumed to be specified

by inclusion files.

0: Call of *jacobianOff* is included.

1: Action follows setting of field *J*.

LAT_GRID:

Has the same functionality as the arts WSV with the same name,

with the difference that a scalar value is accepted when

ATMOSPHERE_DIM = 1. It could be needed to set such a scalar value

when *qarts_vmr_field* and similar functions are used.

Can be given either as the name of a XML file, or as a matching

Matlab variable.

LON_GRID:

Has the same functionality as the arts WSV with the same name,

with the difference that a scalar value is accepted when

ATMOSPHERE_DIM = 1. It could be needed to set such a scalar value

when *qarts_vmr_field* and similar functions are used.

Can be given either as the name of a XML file, or as a matching

Matlab variable.

L2_EXTRA:

Information to functions repacking retrieval information. Such a

product is normally denoted as L2 data. This field lists data to

be included beside the direct retrieval quantities, for which

their L2 field has the same functionality. The information is

given as string array, e.g.:

Q.L2_EXTRA = {’cost’,’mresp’,’ptz’}

There is no general L2 function and the possible data output (and

coding) differs between the functions.

MBLOCK_AA_GRID:

Has the same functionality as the arts WSV with the same name.

This field can be ignored, depending on setting of

SENSOR_RESPONSE.

If the antenna dimension is 1, this variable can be left as {}.

For 2D antennas it has to be set even if the sensor does not

include an antenna.

Can be given either as the name of a XML file, or as a Matlab

variable.

MBLOCK_ZA_GRID:

Has the same functionality as the arts WSV with the same name.

This has to be set even if the sensor does not include an

antenna.

Can be given either as the name of a XML file, or as a Matlab

variable.

OUTPUT_FILE_FORMAT:

As the arts WSV with the same name. That is, the format for files

created by arts. Possible options are ’binary’ and ’ascii’. The

binary option should in general be most efficient.

POINTING:

Structure for specification of pointing fit retrievals. No

retrieval ismade if field is empty or sub-field RETRIEVAL is set

to false. The WSM used is *jacobianAddPointing*. These sub-fields

are defined:

<RETRIEVE> Flag to activate pointing retrieval.

<DZA> Size for numerical perturbation. See used WSM.

<POLY_ORDER> Order of polynomial to describe pointing errors.

<SX> Covariance matrix of a priori knowledge for pointing fit

variables. A square matrix with POLY_ORDER+1.

<L2> Flag for any function creating L2 data. See comments for

L2_EXTRA. If set to true, the retrieved pointing variables will

be included in the L2 output. Otherwise not. This field has no

importance if RETRIEVE is false.

POLYFIT:

Structure for specification of polynomial baseline fits. No

retrieval ismade if field is empty or sub-field RETRIEVAL is set

to false. The WSM used is *jacobianAddPolyfit*. All

no_xxx_variation arguments of the WSM are set to default value.

The different polynomial coefficients are assumed to be

uncorrelated. These sub-fields are defined:

<RETRIEVE> Flag to activate pointing retrieval

<ORDER> Order of polynomial fit.

<SX0> Covariance matrix of a priori knowledge for coefficient of

order zero. There shall be such a matrix for each coefficient

order until:

<SXn> Covariance matrix of a priori knowledge for coefficient of

order POLY_ORDER. The last required covariance matrix.

<L2> Flag for any function creating L2 data. See comments for

L2_EXTRA. If set to true, the retrieved baseline variables will

be included in the L2 output. Otherwise not. This field has no

importance if RETRIEVE is false.

PPATH_LMAX:

As the arts WSV with the same name .

Can be given either as the name of a XML file, or as a Matlab

variable.

PPATH_LRAYTRACE:

As the arts WSV with the same name .

Can be given either as the name of a XML file, or as a Matlab

variable.

PPATH_STEP_AGENDA:

As the arts WSV with the same name .WSMs are listed as an array of

strings. An example showing how an agenda definition looks like:

Q.PPATH_STEP_AGENDA={’ppath_stepGeometric’}

P_GRID:

Has the same functionality as the arts WSV with the same name.

Can be given either as the name of a XML file, or as a matching

Matlab variable.

R_GEOID:

Geoid radius. A spherical geoid will be assumed if the field value

is a a scalar. Otherwise it is assumed that the field holds a

matrix of correct size. Note that *wgs84* is part of atmlab and

can be used to set the field value (e.g.

Q.R_GEOID=wgs84(2.Q.LAT_GRID);).

RAW_ATMOSPHERE:

If set a "raw atmosphere" in read. This is the main file name for

the raw atmosphere. See further ’arts -d AtmRawRead’.

Data in the fields T_FIELD, Z_FIELD or VMR_FIELD are included at a

later stage and will then overwrite the data from the raw

atmosphere. This thus some flexibility to mix data from different

sources.

RAW_ATM_EXPAND_1D:

Boolean to expand an 1D raw atmosphere to set ATMOSPHERE_DIM. If

set to 1, the WSM *AtmFieldsCalcExpand1D* is used instead of

AtmFieldsCalc.This variable is only used if RAW_ATMOSPHERE is

set.

REFR_INDEX_AGENDA:

As the arts WSV with the same name. If PPATH_STEP_AGENDA does not

involve refraction, this field can be left as {}.

WSMs are listed as an array of strings. See PPATH_STEP_AGENDA

for a practical example on format to use.

SENSOR_DO:

Boolean to include sensor characteristics. Otherwise monochromatic

pencil beam calculations are performed. *SENSOR_POS/LOS* are used

in both cases.

{}: Nothing is done. Relevant data are assumed to be specified

by inclusion files.

0: Call of *sensorOff* is included.

1: Action follows setting of field *SENSOR_RESPONSE*.

SENSOR_LOS:

As the arts WSV with the same name.

SENSOR_POS:

As the arts WSV with the same name.

SENSOR_RESPONSE:

As the arts WSV with the same name. Three main options exist:

1: The first option is to specify each variable associated with

the sensor individually. This field can then be the name of a XML

file or a Matlab sparse matrix. Other fields that must be

specified for this option include: ANTENNA_DIM, MBLOCK_ZA/AA_GRID

and SENSOR_RESPONSE_F/ZA/AA/POL.

2: The name of control files to include (ARTS_INCLUDES

recognised). Given as an array of strings.

3: Calculate the response from basic data. This field shall then

be a structure, following the definitions in *qartsSensor*. Type

’qinfo(@qartsSensor);’ for definition of required data

fields.Other fields that must/may be specified here include

ANTENNA_DIM and MBLOCK_ZA/AA_GRID.

SENSOR_RESPONSE_AA:

As the arts WSV with the same name. This field can be ignored,

depending on setting of SENSOR_RESPONSE.

Can be given either as the name of a XML file, or as a matching

Matlab variable.

SENSOR_RESPONSE_AA_GRID:

As the arts WSV with the same name. This field can be ignored,

depending on setting of SENSOR_RESPONSE.

Can be given either as the name of a XML file, or as a matching

Matlab variable.

SENSOR_RESPONSE_F:

As the arts WSV with the same name. This field can be ignored,

depending on setting of SENSOR_RESPONSE.

Can be given either as the name of a XML file, or as a matching

Matlab variable.

SENSOR_RESPONSE_F_GRID:

As the arts WSV with the same name. This field can be ignored,

depending on setting of SENSOR_RESPONSE.

Can be given either as the name of a XML file, or as a matching

Matlab variable.

SENSOR_RESPONSE_POL:

As the arts WSV with the same name. This field can be ignored,

depending on setting of SENSOR_RESPONSE.

Can be given either as the name of a XML file, or as a Matlab

variable.

SENSOR_RESPONSE_POL_GRID:

As the arts WSV with the same name. This field can be ignored,

depending on setting of SENSOR_RESPONSE.

Can be given either as the name of a XML file, or as a Matlab

variable.

SENSOR_RESPONSE_ZA:

As the arts WSV with the same name. This field can be ignored,

depending on setting of SENSOR_RESPONSE.

Can be given either as the name of a XML file, or as a matching

Matlab variable.

SENSOR_RESPONSE_ZA_GRID:

As the arts WSV with the same name. This field can be ignored,

depending on setting of SENSOR_RESPONSE.

Can be given either as the name of a XML file, or as a matching

Matlab variable.

STOKES_DIM:

As the arts WSV with the same name.

SURFACE_PROP_AGENDA:

As the arts WSV with the same name. WSMs are listed as an array of

strings. See PPATH_STEP_AGENDA for a practical example on format

to use.

T:

Data and setting associated with atmospheric temperatures.

Normally used when retrieving temperature. Otherwise, *T_FIELD*

can be set directly.

<ATMDATA> The input shall follow the atmdata format, defined in

isatmdata. The data specified here are not directly given to

arts, it can only be used to set-up *T_FIELD*. This step is

handled by *qarts_t_or_z_field*. The main usage of this field

should be to import data of climatology character. Can be given as

a variable or a file saved through *gf_save*.

<RETRIEVE> If set to true, atmospheric temperatures are

retrieved.

<GRIDS> Retrieval grids for temperature. An array of vectors of

length 3: {p_grid,lat_grid,lon_grid}. Grids for dimensions not

used shall be empty.

<SX> Covariance matrix of a priori knowledge for temperature. Size

must match the grid field. Data must match <UNIT>. A matrix, that

can be sparse.

<L2> Flag for any function creating L2 data. See comments for

L2_EXTRA. If set to true, the retrieved state for temperature

will be included in the L2 output. Otherwise not.

<L2_RANGE> As the same field for ABS_SPECIES.

<HSE> As the argument to *jacobianAddTemperature* with same name.

Default here is "on". This refers only to the actual jacobian

calculation. If the atmosphere itself fulfils HSE or not is

controled by Q.HSE.

<METHOD> As the argument to *jacobianAddTemperature* with same

name. Default here is "analytical".

<DT> As the argument to *jacobianAddTemperature* with same name.

Default here is 1 K.

None of the fields are mandatory for pure forward calculations. If

RETRIEVAL is set to false, the other retrieval related fields are

ignored.

T_FIELD:

As the arts WSV with the same name. Will replace temperature data

inserted through RAW_ATMOSPHERE.

Can be given either as the name of a XML file, or as a matching

Matlab variable.

TNOISE_C:

Thermal noise correlation. A matrix (sparse preferably) giving the

correlation of thermal noise between channels. Hence, the diagonal

elements shall all be one. If the thermal noise is the same for

all channels and has a standard deviation of s, the covariance

matrix is s*s*TNOISE_C.

VMR_FIELD:

As the arts WSV with the same name. Will replace VMR data inserted

through RAW_ATMOSPHERE.

Can be given either as the name of a XML file, or as a matching

Matlab variable.

For retrievals, the a priori state for *ABS_SPECIES* is

determined by this field.

WIND_U_FIELD:

As the arts WSV with the same name. Can be set to [].

Can be given either as the name of a XML file, or as a matching

Matlab variable.

WIND_V_FIELD:

As the arts WSV with the same name. Can be set to [].

Can be given either as the name of a XML file, or as a matching

Matlab variable.

WIND_W_FIELD:

As the arts WSV with the same name. Can be set to [].

Can be given either as the name of a XML file, or as a matching

Matlab variable.

WSMS_AT_END:

Workspace method calls to include at the far end of the control

file. As WSMS_AT_START beside position in control file.

WSMS_AT_START:

Workspace method calls to include at the top of the control file.

These calls will be executed before inclusion of files specified

in INCLUDES.

Method calls are specified as an cell array of strings. For

example, if no inclusion files are used, these calls could be

useful to include

{ ’VectorSet(abs_n2,[0.7808])’, ’abs_cont_descriptionInit’ }

WSMS_BEFORE_RTE:

Workspace method calls to include just before execution of

YCALC_WSMS or batch core part. Accordingly, this field is

considered only if spectra are calculated (ignored for e.g. pure

absorption calculations). Format as for WSMS_AT_START.

YCALC_WSMS:

Workspace method calls for performing radiative transfer

calculations. The standard choice should be that this fields

includes a call of *yCalc*. There is no clear division between

this field and *WSMS_BEFORE_RTE*, but for best flexibility this

field should start with *yCalc* (or corresponding method),

followed by post-processing not handled by other fields.

Accordingly, this field is considered only if spectra are

calculated (ignored for e.g. pure absorption calculations). Format

as for WSMS_AT_START.

Y_UNIT:

As the arts WSV with the same name. That is, the radiance unit.

The following options exist:

’1’ : Basic radiances [W/m2/Hz/sr]

’RJBT’ : Conversion to brightness temperature by the

Rayleigh-Jeans approximation of the Planck function.

’PlanckBT’: Conversion to brightness temperature by the Planck

function.

For further information: ’arts -d y_unit’.

Z_ATMDATA:

The input shall follow the atmdata format, defined in *isatmdata*.

The data specified here are not directly given to arts, it can

only be used to set-up *Z_FIELD*. This step is handled by

qarts_t_or_z_field. The main usage of this field should be to

import data of climatology character. Can be given as a variable

or a file saved through *gf_save*.

Z_FIELD:

As the arts WSV with the same name. Will replace altitude data

inserted through RAW_ATMOSPHERE.

Can be given either as the name of a XML file, or as a matching

Matlab variable.

Z_SURFACE:

Surface altitude (above geoid). A constant altitude will be

assumed if the field value is a scalar. Otherwise it is assumed

that the field holds a matrix of correct size.

C The fields of O

A:

Flag to include averaging kernel matrix in X. Default is 0.

cost:

Flag to include cost values in X and to calculate cost even if

solution method does not require cost values. This affects also

the output to *outfids*.

dx:

Flag to include the sequence of convergence values (defined as for

stop_dx).

e:

Flag to include in X the estimate of total retrieval error

(square root of diagonal elements of S). That is, the standard

deviation for the sum of observation and smoothing errors.

eo:

Flag to include in X the estimate of observation error (square

root of diagonal elements of So).

es:

Flag to include in X the estimate of smootning error (square root

of diagonal elements of Ss).

ex:

Flag to include in X the a priori uncertainty (square root of

diagonal elements of Sx).

G:

Flag to include gain matrix in X (alse denoted as Dy).

ga_factor_not_ok:

The factor with which the Marquardt-Levenberg factor is increased

when not a lower cost value is obtained. This starts a new

sub-teration. This value must be > 1.

ga_factor_ok:

The factor with which the Marquardt-Levenberg factor is decreased

after a lower cost values has been reached. This value must be >

1.

ga_max:

Maximum value for gamma factor for the Marquardt-Levenberg method.

The stops if this value is reached and cost value is still not

decreased. This value must be > 0.

ga_start:

Start value for gamma factor for the Marquardt-Levenberg method.

Type:

help oem

for a definition of the gamma factor. This value must be >= 0.

itermethod:

Iteration method. Choices are ’GN’ for Gauss-Newton and ’ML’

or’LM’ for Marquardt-Levenberg.

i_log:

Index of values in x that are retrieved in a log-scale (e.g. the

logarithm of VMR/VMRa (see i_rel)). The actual inversion is

performed with jacobians provided (that is, must be given to oem.m

scaled correctly), but the log-scale transformation is removed for

the error characterisation for the jacobians matching this field.

No index should be found in both i_rel and i_log.

i_rel:

Index of values in x that are retrieved in a relative/fractional

unit and arescaling of the jacobians is needed. An example on a

relative retrieval is x = VMR/VMRa, where VMRa is the volume

mixing ratio for the a priori state. Accordingly, the

corresponding jacobians must describe changes with respect to the

a priori state, and a direct calculation for x != xa will not give

a correct results. A rescaling back to xa is then needed and this

operation can be performed by oem.m by setting this field to the

indexes for which a rescaling is needed.

J:

Flag to include weighting function matrix in X.

jexact:

Flag to select recalculation of J after last iteration. If not set

to 1, J will correspond to x before last iteration. Also used for

the linear case.

jfast:

Flag to always calculate the Jacobian in parallel to the spectrum.

This field is only used for the Marquardt-Levenberg case. This

option can save time if the calculation of the Jacobian is very

fast and the convergence is smooth (few cases where ga has to be

increased). The advanatge of this option is that the next

iteration can be started without a call of the forward model.

linear:

Flag to trigger a linear inversion. Fields like itermethod are

ignored if this option is selected. Default is non-linear (0).

maxiter:

Maximum number of iterations.

msg:

Message to put at the start of output messages. Can include e.g.

number of retrieval case.

outfids:

File identifiers for output messages. Inlcude 1 for the screen.

Set to [] for no output att all.

S:

Flag to include covariance matrix for total error in X. That is,

the sum of So and Ss.

So:

Flag to include covariance matrix for observation error in X.

Ss:

Flag to include covariance matrix for smoothing error in X.

stop_dx:

Convergence criterion. The iteration is halted when the the change

in x is < stop_dx (see Eq. 5.29 in Rodgers’ book). A normalisation

to the length of x is applied.

sxnorm:

Flag to internally perform a normalisation of x, based on the

diagonal elements of Sx. This to avoid a pure condition number for

a matrix inversion that is encountered when units are such that

retrieved values vary strongly in magnitude.

The inverse of Sx must be calculated internally if this option is

used and there is no use in pre-calculating *Sxinv*.

yf:

Flag to include "fitted spectrum" in X. That is, the simulated

measurement matching retrieved state.

Xiter:

Flag to include all iteration states in X.

D The fields of Y

DAY:

Measurement time information. All these fields (YEAR, MONTH, ...)

are numeric scalars. This information is primarily used to extract

data from the climatology databases.

F:

Frequency for each value of Y. Not required information. Qpack2

uses this field only for consistency checks.

HOUR:

Optional data. Allows a more detailed specification of measurement

time. Otherwise as field DAY.

HSE_P:

The reference point when enforcing hydrostatic equilibrium. The

geometrical altitude (HSE_Z) is given for one presssure (HSE_P).

HSE_Z:

The reference point when enforcing hydrostatic equilibrium. The

geometrical altitude (HSE_Z) is given for one presssure (HSE_P).

LATITUDE:

The geographical position of the measurement.

LONGITUDE:

The geographical position of the measurement.

MINUTE:

Optional data. Allows a more detailed specification of measurement

time. Otherwise as field DAY.

MONTH:

Measurement time information. All these fields (YEAR, MONTH, ...)

are numeric scalars. This information is primarily used to extract

data from the climatology databases.

SECOND:

Optional data. Allows a more detailed specification of measurement

time. Otherwise as field DAY.

TNOISE:

Magnitude of thermal noise, given as 1 standard devation. A scalar

or a vector having the same length as y. If a scalar, the value is

applied for all spectrometer channels.

Y:

The spectrum.

YEAR:

Measurement time information. All these fields (YEAR, MONTH, ...)

are numeric scalars. This information is primarily used to extract

data from the climatology databases.

ZA:

Line-of-sight zenith angle for the measurement. A scalar value.

Z_PLATFORM:

Altitude (above geoid) of observation platform.

