Home > atmlab > mie > mie_tetado.m

mie_tetado

PURPOSE ^

Computation of Mie Power Scattering and diffraction functions

SYNOPSIS ^

function result = Mie_tetado(x,fact)

DESCRIPTION ^

 Computation of Mie Power Scattering and diffraction functions 
 and gi coefficients of Legendre Polynomial decomposition
 for complex refractive-index ratio m=m'+im", size parameters x=k0*a, 
 according to Bohren and Huffman (1983) BEWI:TDD122
 1) polar diagram, linear or in dB scale with respect to minimum, with
 SL in upper semicircle, SR in lower semicircle and 3 cartesian diagrams
 2) same for SL0 and SR0 without diffraction pattern, 
 3) scattered intensity S (lin or log scale), and degree of polarisation
 4) scattered intensity without diffraction peak S0 (lin or log scale),
 5) beam efficiencies of S and S0, diffraction efficiency Qd
 6) gi-factors (coefficients of Legendre Polynomials of Phase Function).
 C. M�zler, April 2004.

CROSS-REFERENCE INFORMATION ^

This function calls: This function is called by:

DOWNLOAD ^

mie_tetado.m

SOURCE CODE ^

0001 function result = Mie_tetado(x,fact)
0002 
0003 % Computation of Mie Power Scattering and diffraction functions
0004 % and gi coefficients of Legendre Polynomial decomposition
0005 % for complex refractive-index ratio m=m'+im", size parameters x=k0*a,
0006 % according to Bohren and Huffman (1983) BEWI:TDD122
0007 % 1) polar diagram, linear or in dB scale with respect to minimum, with
0008 % SL in upper semicircle, SR in lower semicircle and 3 cartesian diagrams
0009 % 2) same for SL0 and SR0 without diffraction pattern,
0010 % 3) scattered intensity S (lin or log scale), and degree of polarisation
0011 % 4) scattered intensity without diffraction peak S0 (lin or log scale),
0012 % 5) beam efficiencies of S and S0, diffraction efficiency Qd
0013 % 6) gi-factors (coefficients of Legendre Polynomials of Phase Function).
0014 % C. M�zler, April 2004.
0015 
0016 m1=[1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9,2.0,2.1,2.2,2.3,2.4,2.5];
0017 nj=length(m1);
0018 Q=[];gi=[];g0i=[];
0019 m=m1+0.001i;
0020 for j=1:nj,
0021     y=mie_teta(m(j),x,fact);
0022     y.Q=[m1(j),y.Q];
0023     Q=[Q;y.Q];
0024     gi=[gi;y.gi];
0025     g0i=[g0i;y.g0i];
0026 end;
0027 
0028 result.Q=Q;
0029 result.gi=gi;
0030 result.g0i=g0i;

Generated on Mon 15-Sep-2014 13:31:28 by m2html © 2005