Home > atmlab > h2o > thermodynamics > equivalent_temperature.m

equivalent_temperature

PURPOSE ^

EQUIVALENT_TEMPERATURE equivalent temperature Te

SYNOPSIS ^

function Te = equivalent_temperature(rh, T, p)

DESCRIPTION ^

 EQUIVALENT_TEMPERATURE   equivalent temperature Te

    Temperature a sample of moist air would obtain if all
    the moisture were condensed out at constant pressure
    (i.e. latent heat converted to sensible heat). 

 FORMAT    Te = equivalent_temperature(T, w)
        
 OUT   Te  equivalent temperature [K]
 IN    rh  relative humidity [%], rh > 0 and can be a scalar or a tensor
       T   air temperature [K], it can be a scalar or a tensor
       p   air pressure [Pa], it can be a scalar or a tensor

 EXAMPLE:
       Te = equivalent_temperature(50, 298, 100000)
       Te = 322.6981

 ACCURACY: 
           EQUIVALENT_TEMPERATURE uses thermodynamic relations with no
           assumption

 Reference: A short course in cloud physics (Chapter II, water vapor and
             its thermodynamic effects); 1996, By: R. R. Rogers and M. M.
             Yau, page: 20, eq:2.32

 2009-08-15   Created by Isaac Moradi.

CROSS-REFERENCE INFORMATION ^

This function calls: This function is called by:

DOWNLOAD ^

equivalent_temperature.m

SOURCE CODE ^

0001 function Te = equivalent_temperature(rh, T, p)
0002 % EQUIVALENT_TEMPERATURE   equivalent temperature Te
0003 %
0004 %    Temperature a sample of moist air would obtain if all
0005 %    the moisture were condensed out at constant pressure
0006 %    (i.e. latent heat converted to sensible heat).
0007 %
0008 % FORMAT    Te = equivalent_temperature(T, w)
0009 %
0010 % OUT   Te  equivalent temperature [K]
0011 % IN    rh  relative humidity [%], rh > 0 and can be a scalar or a tensor
0012 %       T   air temperature [K], it can be a scalar or a tensor
0013 %       p   air pressure [Pa], it can be a scalar or a tensor
0014 %
0015 % EXAMPLE:
0016 %       Te = equivalent_temperature(50, 298, 100000)
0017 %       Te = 322.6981
0018 %
0019 % ACCURACY:
0020 %           EQUIVALENT_TEMPERATURE uses thermodynamic relations with no
0021 %           assumption
0022 %
0023 % Reference: A short course in cloud physics (Chapter II, water vapor and
0024 %             its thermodynamic effects); 1996, By: R. R. Rogers and M. M.
0025 %             Yau, page: 20, eq:2.32
0026 %
0027 % 2009-08-15   Created by Isaac Moradi.
0028 
0029 % set constants
0030 cp = constants( 'SPECIFIC_HEAT_CONST_PRES' ); % specific heat at constant pressure J.kg-1.K-1
0031 L = latent_heat_vaporization(T);
0032 
0033 % calculate mixing ratio
0034 r = water_vapor_mixing_ratio(rh, T, p) ;
0035 
0036 % calculate equivalent temperature
0037 Te = T + L .* r ./ cp;

Generated on Mon 15-Sep-2014 13:31:28 by m2html © 2005