Polarized radiative transfer including multiple scattering – Methods and applications

Claudia Emde

Meteorological Institute Faculty of Physics Ludwig-Maximilians-Universität Munich, Germany

ARTS workshop, Kristineberg, Sweden, 7–10 June 2010

Outline

Radiative transfer – background

- Radiation quantities
- Polarisation
- The vector radiative transfer equation
- Input for radiative transfer optical properties

Methods to solve the radiative transfer equation

- Discrete Ordinate Methods
- CloudIce Sensitivity study
- Monte Carlo Methods
- Summary

Conclusions/ discussion

Radiation quantities

 $E = \int L \cos \theta \, d\Omega$

Adapted from http://escience.anu.edu.au

Radiance

- Unit: W/(m² nm sr) or W/(m²s⁻¹ sr)
- Required for remote sensing application, instruments measure specific direction.
- Irradiance
 - Unit: W/(m² nm) or W/(m²s⁻¹)
 - Radiance integrated over half space, required to compute radiative forcing (climate models).

Polarisation in the atmosphere - rainbow

Polarisation in the atmsophere - rainbow

Description of polarization - The Stokes vector

The vector radiative transfer equation

$$\frac{\mathrm{d}\mathbf{I}}{\mathrm{d}s}(\mathbf{n},\nu) = -\langle \mathbf{K}(\mathbf{n},\nu,T) \rangle \mathbf{I}(\mathbf{n},\nu) + \langle \mathbf{a}(\mathbf{n},\nu,T) \rangle B(\nu,T) + \int_{4\pi} \mathrm{d}\mathbf{n}' \langle \mathbf{Z}(\mathbf{n},\mathbf{n}',\nu,T) \rangle \mathbf{I}(\mathbf{n}',\nu)$$

 \Rightarrow Differential equation for Stokes vector I

Cloud particles and trace gases

• Single scattering properties (SSP) of cloud particles: $\langle K^p \rangle, \, \langle a^p \rangle, \, \langle Z^p \rangle$

- Computation methods/theories for SSP:
 - ▶ Rayleigh scattering (particle size (r) \ll wavelength (λ))
 - Lorentz-Mie theory (spherical particles)
 - ► T-matrix method ($r \approx \lambda$, aspherical, rotationally symmetric particles) (*Mishchenko et. al.*, 2002)
 - Discrete dipole approximation ($r \approx \lambda$, arbitrarily shaped particles)
 - Geometrical optics approximation ($r \gg \lambda$)
- Gas absorption coefficients: $\langle K^g \rangle$, $\langle a^g \rangle$
 - Calculated based on HITRAN/JPL spectral line catalogs

Cloud particles and trace gases

- Single scattering properties (SSP) of cloud particles: $\langle K^p \rangle, \, \langle a^p \rangle, \, \langle Z^p \rangle$
- Computation methods/theories for SSP:
 - Rayleigh scattering (particle size (r) \ll wavelength (λ))
 - Lorentz-Mie theory (spherical particles)
 - ► T-matrix method ($r \approx \lambda$, aspherical, rotationally symmetric particles) (*Mishchenko et. al.*, 2002)
 - Discrete dipole approximation ($r \approx \lambda$, arbitrarily shaped particles)
 - Geometrical optics approximation ($r \gg \lambda$)

• Gas absorption coefficients: $\langle K^g \rangle$, $\langle a^g \rangle$

Calculated based on HITRAN/JPL spectral line catalogs

Cloud particles and trace gases

- Single scattering properties (SSP) of cloud particles: $\langle K^p \rangle, \, \langle a^p \rangle, \, \langle Z^p \rangle$
- Computation methods/theories for SSP:
 - Rayleigh scattering (particle size (r) \ll wavelength (λ))
 - Lorentz-Mie theory (spherical particles)
 - ► T-matrix method ($r \approx \lambda$, aspherical, rotationally symmetric particles) (*Mishchenko et. al.*, 2002)
 - Discrete dipole approximation ($r \approx \lambda$, arbitrarily shaped particles)
 - Geometrical optics approximation ($r \gg \lambda$)

• Gas absorption coefficients: $\langle K^g \rangle$, $\langle a^g \rangle$

Calculated based on HITRAN/JPL spectral line catalogs

Ice particle scattering

22° halo and sundog

www.dewbow.co.uk

Scattering phase matrix

- Solar radiation and emitted radiation unpolarized (incoherent superposition of electromagnetic waves)
- Polarisation by scattering in the atmosphere (Molecules, clouds, aerosols)

Discrete Ordinate ITerative Method (ARTS-DOIT)

- Multiple scattering model for thermal radiative transfer
- Special features
 - polarization
 - spherical geometry
 - oriented particles
- Applications:
 - Cloud remote sensing in down-looking and limb geometry
 - Calculate impact of clouds on occultation measurements

ARTS-DOIT: The cloud box

Radiation field:

Set of Stokes vectors for all combinations of positions and directions:

$$\mathbf{I} = \mathbf{I}(\boldsymbol{p}, \alpha, \beta, \theta, \phi)$$

ARTS-DOIT: Schematic of iterative method

Details in Emde et. al., JGR, 2004

Example - DOIT calculation

Setup:

- 1D atmosphere
- Cloud altitude: 10–12 km
- Prolate spheroids (aspect ratio 0.5)
- Horizontally aligned
- Sensor at 13 km altitude
- Frequency: 318 GHz

Emde et. al., JGR, 2004.

Example - DOIT calculation

• Intensity $I(I_v + I_h)$

- enhancement at angles close to 90°
- otherwise depression
- Polarization difference Q $(I_v - I_h)$
 - negative close to 90°
 - otherwise positive
- Cloud effect on intensity and on polarization increases with particle size.

Cloud effect in limb geometry

• Main source of radiation from tangent point.

Cloud effect in limb geometry

- Main source of radiation from tangent point.
- Two effects:
 - Tangent point inside cloud: Scattering into Line Of Sight (LOS) dominates
 - \Rightarrow BT enhancement.
 - Tangent point below cloud: Scattering away from LOS dominates
 - \Rightarrow BT depression.

CloudIce – Submillimeter passive satellite radiometer

Channels selected for the CloudIce instrument

from Bühler et al., QJRMS, 2007

CloudIce – Sensitivity to particle size

Left: Simulations for narrow gamma distributions.

Retrieval database

from Rydberg et al., QJRMS, 2007

CloudIce simulations

Short overview of **DISORT**

- Multiple scattering model for solar and thermal radiative transfer (Stamnes et al., 1988)
- very well tested and validated
- Approximations:
 - 1D plane-parallel geometry
 - no polarization
 - randomly oriented particles
- Features:
 - second order intensity correction (needed to simulate rainbow or halo)
 - method is much faster than DOIT for thick clouds, because no iterations required
 - very accurate

Monte Carlo Methods

- Generation of random numbers ξ for a given probability density function p(x)
- Normalized cumulative distribution *F*(*x*):

$$F(x) = \frac{\int_{x_{\min}}^{x} \rho(x') dx'}{\int_{x_{\min}}^{x_{\max}} \rho(x') dx'}$$
(1)

• Random number r, uniformly distributed between 0 and 1:

$$F(\xi) = r \tag{2}$$

• Random number ξ :

$$\xi = F^{-1}(r) \tag{3}$$

1. Generate photon

- Photon direction determined by sun position (solar zenith angle θ₀, solar azimuth angle φ₀)
- Starting position at top of atmosphere determined randomly

2. Sample the pathlength

 Absorption is included by photon weight

$$w_a = \exp(-\int eta_{
m abs} ds)$$

 Total absorption coefficient (molecules, aerosols, clouds)

$$\beta_{\rm abs} = \sum \beta_{\rm abs,i}$$

• PDF for free pathlength of photon

$$P_s = \exp(-\int_0^s eta_{
m sca} ds')$$

• Total scattering coefficient (molecules, aerosols, clouds)

$$\beta_{\rm sca} = \sum \beta_{\rm sca,i}$$

3. Interaction

use random number
 r ∈ [0, 1] to decide whether
 the photon interacts with a
 cloud droplet/particle,
 aerosol or molecule

$$\frac{\sum_{i=1}^{n_j-1}\beta_{\text{sca},i}}{\beta_{\text{sca}}} < r \le \frac{\sum_{i=1}^{n_j}\beta_{\text{sca},i}}{\beta_{\text{sca}}}$$

4. Scattering direction

• Use phase function (*P*₁₁) as PDF for the scattering angle and a random angle between

0 and 2π for the azimuth direction

 Scattered Stokes weight vector (Importance sampling method)

$$\mathbf{I}^{\text{sca}} = P_{11}^{-1} \mathbf{L}(\sigma_2) \mathbf{P} \mathbf{L}(\sigma_1) \mathbf{I}^{\text{inc}}$$
$$= P_{11}^{-1} \mathbf{Z} \mathbf{I}^{\text{inc}}$$

5. Multiple scattering

6. Surface reflection

- Lambertian surface, PDF $P(\theta) = cos(\theta)$
- Bidirectional reflectance distribution function, BPDF(θ_{inc}, φ_{inc}, θ_{ref}, φ_{ref}), matrix for polarized RT

7. Periodic boundary condition

8. Count the photon

- Photon is counted when it reaches TOA or the surface
- Reflected irradiance:
 R = N_{TOA}/N_{tot}
- Transmitted irradiance $T = N_{BOA}/N_{tot}$
- How to compute radiances?

Directional (local) estimate method

 At each scattering point the probability that the photon is scattered into the direction of the sensor is calculated

$$w = w_0 P(\theta_p) \frac{\exp(- au_{\mathrm{ext}})}{\cos(heta_d)}$$

- Sum of weights yields radiance in required direction
- Details in Marshak and Davis, 2005

Radiative transfer model MYSTIC

Monte carlo code for the phYSically correct Tracing of photons In Cloudy atmospheres Mayer [2009], Emde and Mayer [2007]

- Polarization fully integrated, Stokes vector may be calculated for arbitrary atmospheres with molecules, aerosols, and clouds (*Emde et al., 2010*)
- Combination of several methods to make code accurate and efficient:
 - Local estimate method + variance reduction
 - Importance sampling
 - Forward and backward mode
 - 1D or 3D simulations
 - spherical geometry in 1D mode
- Validation:
 - Benchmark results (Coulson et al., 1960; Wauben and Hovenier, 1992)
 - > Polarized radiance measurements (Blumthaler et al., 2008)

libRadtran

Mayer and Kylling, ACP, 2005 *http://www.libradtran.org*

- Spectrally resolved in the UV/visible, line-by-line, quasi-spectral (LOWTRAN), and correlated-k in the solar and thermal infrared
- User-friendly flexible interface to various 1D and 3D solvers, including *disort*, *sdisort*, *twostr*, *polradtran* (Evans, 1991), (*MYSTIC*)
- Mostly open source
- Validated in various model-model and model-measurement intercomparisons
- Includes several parameterizations of cloud and aerosol optical properties

Clear sky reflectance

- Total and polarized reflectance at 500 nm (top of atmosphere)
- Spherical geometry, therefore reflectance is very small at angles above 80° (tangent point above \approx 20 km)

Cloud reflectance ($\tau = 10$)

- Total and polarized reflectance at 500 nm (top of atmosphere)
- Rainbow shows large polarization

Satellite image - POLDER

Left: radiance I, Right: polarized radiance Q False color composite of 3 channels [0.87, 0.67, 0.49] μ m, from Bréon (2005).

Methods to solve the radiative transfer equation

Monte Carlo Methods $\phi_v = 90^{\circ}$

solar zenith angle: 30° viewing zenith angle: 30' wavelength: 500 nm

1D cloud layer

 $\phi_v = 270^{\circ}$

 $\phi_v = 10^\circ$, $\theta_v = 0^\circ$

cloud resolution: 60 m sample resolution: 47 m

Methods to solve the radiative transfer equation

Monte Carlo Methods $\phi_v = 90^{\circ}$

Cumulus Clouds

 $\phi_v = 180^{\circ}$

00 0.005 0.010 0.015 0.020 0.02 polarized reflectance

1D cloud layer

cloud resolution: 60 m sample resolution: 47 m

 $\phi_v \!=\! \mathbf{10}^\circ$, $\theta_v \!=\! \mathbf{0}^\circ$

 $\phi_v = 270^{\circ}$

solar zenith angle: 30° viewing zenith angle: 30° wavelength: 500 nm

 $\phi_v = \mathbf{0}^\circ$

Backward photon tracing

- Forward Monte Carlo extremely inefficient for thermal radiative transfer
- Reciprocity principle allows to trace photon backwards starting from the sensor until their point of emission

Monte Carlo Method - ARTS-MC

- 3D radiative transfer solver for the thermal spectral range (Davis et
 - al., 2005)
- Specials:
 - oriented particles
 - polarisation
 - backward tracing method
 - spherical geometry
- Applications:
 - Investigate 3D effects in cloud remote sensing
 - Limb sounding (including inhomogeneous clouds)

3D cloud scenario

Scenario generated based on radar data and stochastical method. Software by R. Hogan. [Davis et al., ACP 2007]

Monte Carlo Methods

Ice water content slices from 3D scenario

resolution: 780m \times 780m \times 110m Grid size: 256 \times 256 \times 64

from Davis et al., ACP 2007

Results for AMSU-B Channel 20

from Davis et al., ACP 2007

Summary of ARTS scattering modules

- Two modules: Discrete Ordinate and Monte Carlo
- Spherical model atmosphere: 1D and 3D
- Polarization included
- Particle shapes: rotationally symmetric (spheroids, cylinders, plates)
- Orientations: Horizontally aligned, random

http://www.sat.ltu.se/arts

Additional tools: PyARTS, ATMLAB

Comparison between DOIT and MC

Conclusions and discussion

- What is included in ARTS:
 - Two modules to calculate polarized RT with multiple scattering (MC and DOIT), unique methods because they work in spherical geometry and with oriented particles
 - Depending on the application, the user has to decide which method to use
- What is missing in ARTS?
 - Parameterization of cloud optical properties (e.g. Hong et al. (2008), pre-calculated optical properties))?
 - Fast solver for 1D plane-parallel atmosphere (to simulate Cloudlce)?
 - Very fast (twostream) solver to compute OLR?