Polarized radiative transfer including multiple scattering Methods and applications

Claudia Emde

Meteorological Institute
Faculty of Physics
Ludwig-Maximilians-Universität
Munich, Germany

ARTS workshop, Kristineberg, Sweden, 7-10 June 2010

Outline

(1) Radiative transfer - background

- Radiation quantities
- Polarisation
- The vector radiative transfer equation
- Input for radiative transfer - optical properties
(2) Methods to solve the radiative transfer equation
- Discrete Ordinate Methods
- Cloudlce - Sensitivity study
- Monte Carlo Methods
- Summary
(3) Conclusions/ discussion

Radiation quantities

Adapted from http://escience.anu.edu.au

- Radiance
- Unit: $\mathrm{W} /\left(\mathrm{m}^{2} \mathrm{~nm} \mathrm{sr}\right)$ or $\mathrm{W} /\left(\mathrm{m}^{2} \mathrm{~s}^{-1} \mathrm{sr}\right)$
- Required for remote sensing application, instruments measure specific direction.
- Irradiance
- Unit: $\mathrm{W} /\left(\mathrm{m}^{2} \mathrm{~nm}\right)$ or $\mathrm{W} /\left(\mathrm{m}^{2} \mathrm{~s}^{-1}\right)$
- Radiance integrated over half space, required to compute radiative forcing (climate models).

Polarisation in the atmosphere - rainbow

Polarisation in the atmsophere - rainbow

Description of polarization - The Stokes vector

Definition:

$$
\begin{aligned}
I & =\left\langle E_{l} E_{l}^{*}+E_{r} E_{r}^{*}\right\rangle \\
Q & =\left\langle E_{l} E_{l}^{*}-E_{r} E_{r}^{*}\right\rangle \\
U & =\left\langle E_{l} E_{r}^{*}+E_{r} E_{l}^{*}\right\rangle \\
V & =i\left\langle E_{l} E_{r}^{*}-E_{r} E_{l}^{*}\right\rangle
\end{aligned}
$$

linear

circular

elliptical

The vector radiative transfer equation

$$
\begin{aligned}
& \frac{\mathrm{d} \mathbf{l}}{\mathrm{~d} s}(\mathbf{n}, \nu)=-\langle\mathbf{K}(\mathbf{n}, \nu, T)\rangle \mathbf{l}(\mathbf{n}, \nu)+\langle\mathbf{a}(\mathbf{n}, \nu, T)\rangle B(\nu, T) \\
&+\int_{4 \pi} \mathrm{~d}^{\prime}\left\langle\mathbf{Z}\left(\mathbf{n}, \mathbf{n}^{\prime}, \nu, T\right)\right\rangle \boldsymbol{I}\left(\mathbf{n}^{\prime}, \nu\right)
\end{aligned}
$$

\Rightarrow Differential equation for Stokes vector I

$$
\xrightarrow{\mathrm{n}} \quad \mathrm{I}=\mathbf{I}(\mathrm{I}, \mathrm{Q}, \mathrm{U}, \mathrm{~V})
$$

Emission

Scattering

Extinction

Cloud particles and trace gases

- Single scattering properties (SSP) of cloud particles: $\left\langle\mathbf{K}^{\mathbf{p}}\right\rangle,\left\langle\mathbf{a}^{\mathbf{p}}\right\rangle,\left\langle\mathbf{Z}^{\mathbf{p}}\right\rangle$
- Computation methods/theories for SSP:
- Rayleiah scattering (particle size $(r) \ll$ wave length (λ))
- Lorentz-Mie theory (spherical particles)
- T-matrix method ($r \approx \lambda$, aspherical, rotationally symmetric particles) (Mishchenko et. al., 2002)
- Discrete dipole approximation ($r \approx \lambda$, arbitrarily shaped particles)
- Geometrical optics approximation $(r \gg \lambda)$
- Gas absorption coefficients: $\left\langle\mathbf{K}^{\mathrm{g}}\right\rangle,\left\langle\mathbf{a}^{\mathrm{g}}\right\rangle$
- Calculated based on HITRAN/JPL spectral line catalogs

Cloud particles and trace gases

- Single scattering properties (SSP) of cloud particles: $\left\langle\mathbf{K}^{\mathbf{p}}\right\rangle,\left\langle\mathbf{a}^{\mathbf{p}}\right\rangle,\left\langle\mathbf{Z}^{\mathbf{p}}\right\rangle$
- Computation methods/theories for SSP:
- Rayleigh scattering (particle size $(r) \ll$ wavelength (λ))
- Lorentz-Mie theory (spherical particles)
- T-matrix method ($r \approx \lambda$, aspherical, rotationally symmetric particles) (Mishchenko et. al., 2002)
- Discrete dipole approximation ($r \approx \lambda$, arbitrarily shaped particles)
- Geometrical optics approximation $(r \gg \lambda)$
- Gas absorption coefficients: $\left\langle\mathbf{K}^{\mathrm{g}}\right\rangle,\left\langle\mathbf{a}^{\mathbf{g}}\right\rangle$
- Calculated based on HITRAN/JPL spectral line catalogs

Cloud particles and trace gases

- Single scattering properties (SSP) of cloud particles: $\left\langle\mathbf{K}^{\mathbf{p}}\right\rangle,\left\langle\mathbf{a}^{\mathbf{p}}\right\rangle,\left\langle\mathbf{Z}^{\mathbf{p}}\right\rangle$
- Computation methods/theories for SSP:
- Rayleigh scattering (particle size $(r) \ll$ wavelength (λ))
- Lorentz-Mie theory (spherical particles)
- T-matrix method ($r \approx \lambda$, aspherical, rotationally symmetric particles) (Mishchenko et. al., 2002)
- Discrete dipole approximation ($r \approx \lambda$, arbitrarily shaped particles)
- Geometrical optics approximation $(r \gg \lambda)$
- Gas absorption coefficients: $\left\langle\mathbf{K}^{\mathrm{g}}\right\rangle,\left\langle\mathbf{a}^{\mathrm{g}}\right\rangle$
- Calculated based on HITRAN/JPL spectral line catalogs

Ice particle scattering

Halo at 22° scattering angle

22° halo and sundog

www. dewbow.co.uk

Scattering phase matrix

- Solar radiation and emitted radiation unpolarized (incoherent superposition of electromagnetic waves)
- Polarisation by scattering in the atmosphere (Molecules, clouds, aerosols)

Discrete Ordinate ITerative Method (ARTS-DOIT)

- Multiple scattering model for thermal radiative transfer
- Special features
- polarization
- spherical geometry
- oriented particles
- Applications:
- Cloud remote sensing in down-looking and limb geometry
- Calculate impact of clouds on occultation measurements

ARTS-DOIT: The cloud box

$$
\begin{aligned}
\vec{p} & =\left\{p_{1}, p_{2}, \ldots, p_{N_{p}}\right\} \\
\vec{\alpha} & =\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{N_{\alpha}}\right\} \\
\vec{\beta} & =\left\{\beta_{1}, \beta_{2}, \ldots, \beta_{N_{\beta}}\right\} \\
\vec{\theta} & =\left\{\theta_{1}, \theta_{2}, \ldots, \theta_{N_{\theta}}\right\} \\
\vec{\phi} & =\left\{\phi_{1}, \phi_{2}, \ldots, \phi_{N_{\phi}}\right\}
\end{aligned}
$$

Radiation field:
Set of Stokes vectors for all combinations of positions and directions:

$$
\mathbf{I}=\mathbf{I}(p, \alpha, \beta, \theta, \phi)
$$

ARTS-DOIT: Schematic of iterative method

Details in Emde et. al., JGR, 2004

Example - DOIT calculation

Emde et. al., JGR, 2004.

Example - DOIT calculation

- Intensity $I\left(I_{v}+I_{h}\right)$
- enhancement at angles close to 90°
- otherwise depression
- Polarization difference Q
$\left(I_{v}-I_{h}\right)$
- negative close to 90°
- otherwise positive
- Cloud effect on intensity and on polarization increases with particle size.

Emde et. al., JGR, 2004.

Cloud effect in limb geometry

- Main source of radiation from tangent point.

Cloud effect in limb geometry

- Main source of radiation from tangent point.
- Two effects:
- Tangent point inside cloud: Scattering into Line Of Sight (LOS) dominates \Rightarrow BT enhancement.
- Tangent point below cloud: Scattering away from LOS dominates
$\Rightarrow B T$ depression.

Cloudlce - Submillimeter passive satellite radiometer

Channels selected for the Cloudlce instrument from Bühler et al., QJRMS, 2007

Cloudlce - Sensitivity to particle size

Left: Simulations for narrow gamma distributions.

Retrieval database

IWC and IWP profiles derived from radar and in-situ data from Rydberg et al., QJRMS, 2007

Cloudlce simulations

$\begin{array}{r} 449.14 \\ \\ \hline \end{array}$

Profile nr. [-]
Independent pixel approximation from Rydberg et al., QJRMS, 2007

Short overview of DISORT

- Multiple scattering model for solar and thermal radiative transfer (Stamnes et al., 1988)
- very well tested and validated
- Approximations:
- 1D plane-parallel geometry
- no polarization
- randomly oriented particles
- Features:
- second order intensity correction (needed to simulate rainbow or halo)
- method is much faster than DOIT for thick clouds, because no iterations required
- very accurate

Monte Carlo Methods

- Generation of random numbers ξ for a given probability density function $p(x)$
- Normalized cumulative distribution $F(x)$:

$$
\begin{equation*}
F(x)=\frac{\int_{x_{\min }}^{x} p\left(x^{\prime}\right) d x^{\prime}}{\int_{x_{\min }}^{x_{\max }} p\left(x^{\prime}\right) d x^{\prime}} \tag{1}
\end{equation*}
$$

- Random number r, uniformly distributed between 0 and 1:

$$
\begin{equation*}
F(\xi)=r \tag{2}
\end{equation*}
$$

- Random number ξ :

$$
\begin{equation*}
\xi=F^{-1}(r) \tag{3}
\end{equation*}
$$

1. Generate photon

- Photon direction determined by sun position (solar zenith angle θ_{0}, solar azimuth angle ϕ_{0})
- Starting position at top of atmosphere determined randomly

2. Sample the pathlength

- Absorption is included by photon weight

$$
w_{a}=\exp \left(-\int \beta_{\mathrm{abs}} d s\right)
$$

- Total absorption coefficient (molecules, aerosols, clouds)

$$
\beta_{\mathrm{abs}}=\sum \beta_{\mathrm{abs}, \mathrm{i}}
$$

- PDF for free pathlength of photon

$$
P_{s}=\exp \left(-\int_{0}^{s} \beta_{\mathrm{sca}} d s^{\prime}\right)
$$

- Total scattering coefficient (molecules, aerosols, clouds)

$$
\beta_{\mathrm{sca}}=\sum \beta_{\mathrm{sca}, \mathrm{i}}
$$

3. Interaction

- use random number $r \in[0,1]$ to decide whether the photon interacts with a cloud droplet/particle, aerosol or molecule

$$
\frac{\sum_{i=1}^{n_{j}-1} \beta_{\mathrm{sca}, \mathrm{i}}}{\beta_{\mathrm{sca}}}<r \leq \frac{\sum_{i=1}^{n_{j}} \beta_{\mathrm{sca}, \mathrm{i}}}{\beta_{\mathrm{sca}}}
$$

4. Scattering direction

- Use phase function $\left(P_{11}\right)$ as PDF for the scattering angle and a random angle between
0 and 2π for the azimuth direction
- Scattered Stokes weight vector (Importance sampling method)

$$
\begin{gathered}
\left.\mathbf{I}^{\mathrm{sca}}=P_{11}^{-1} \mathbf{L}\left(\sigma_{2}\right) \mathbf{P L}\left(\sigma_{1}\right)\right)^{\mathrm{inc}} \\
=P_{11}^{-1} \mathbf{Z} \mathbf{l}^{\mathrm{inc}}
\end{gathered}
$$

5. Multiple scattering

6. Surface reflection

- Lambertian surface, PDF $P(\theta)=\cos (\theta)$
- Bidirectional reflectance distribution function, $\operatorname{BPDF}\left(\theta_{\text {inc }}, \phi_{\text {inc }}, \theta_{\text {ref }}, \phi_{\text {ref }}\right)$, matrix for polarized RT

7. Periodic boundary condition

8. Count the photon

- Photon is counted when it reaches TOA or the surface
- Reflected irradiance: $R=N_{\text {TOA }} / N_{\text {tot }}$
- Transmitted irradiance $T=N_{B O A} / N_{t o t}$
- How to compute radiances?

Directional (local) estimate method

- At each scattering point the probability that the photon is scattered into the direction of the sensor is calculated

$$
w=w_{0} P\left(\theta_{p}\right) \frac{\exp \left(-\tau_{\mathrm{ext}}\right)}{\cos \left(\theta_{d}\right)}
$$

- Sum of weights yields radiance in required direction
- Details in Marshak and Davis, 2005

Radiative transfer model MYSTIC

Monte carlo code for the phYSically correct Tracing of photons In Cloudy atmospheres
Mayer [2009], Emde and Mayer [2007]

- Polarization fully integrated, Stokes vector may be calculated for arbitrary atmospheres with molecules, aerosols, and clouds (Emde et al., 2010)
- Combination of several methods to make code accurate and efficient:
- Local estimate method + variance reduction
- Importance sampling
- Forward and backward mode
- 1D or 3D simulations
- spherical geometry in 1D mode
- Validation:
- Benchmark results (Coulson et al., 1960; Wauben and Hovenier, 1992)
- Polarized radiance measurements (Blumthaler et al., 2008)

libRadtran

Mayer and Kylling, ACP, 2005 http://www.libradtran.org

- Spectrally resolved in the UV/visible, line-by-line, quasi-spectral (LOWTRAN), and correlated-k in the solar and thermal infrared
- User-friendly flexible interface to various 1D and 3D solvers, including disort, sdisort, twostr, polradtran (Evans, 1991), (MYSTIC)
- Mostly open source
- Validated in various model-model and model-measurement intercomparisons
- Includes several parameterizations of cloud and aerosol optical properties

Clear sky reflectance

- Total and polarized reflectance at 500 nm (top of atmosphere)
- Spherical geometry, therefore reflectance is very small at angles above 80° (tangent point above $\approx 20 \mathrm{~km}$)

Cloud reflectance ($\tau=10$)

- Total and polarized reflectance at 500 nm (top of atmosphere)
- Rainbow shows large polarization

Satellite image - POLDER

Left: radiance I, Right: polarized radiance Q
False color composite of 3 channels [0.87, 0.67, 0.49] $\mu \mathrm{m}$, from Bréon (2005).

1D cloud layer

Cumulus Clouds

solar zenith angle: 30 viewing zenith angle: 30° wavelength: 500 nm

$$
\phi_{v}=10^{\circ}, \theta_{v}=0^{\circ}
$$

$$
\phi_{v}=0^{\circ}
$$

$$
\phi_{v}=270^{\circ}
$$

total reflectance

270°
$0.0000 .0050 .0100 .0150 .020 \quad \frac{1}{1} 0.025$ polarized reflectance

1D cloud layer

cloud resolution: 60 m sample resolution: 47 m

$$
\phi_{v}=0^{\circ}
$$

$\phi_{v}=270^{\circ}$

solar zenith angle: 30° viewing zenith angle: 30° wavelength: 500 nm
polarized reflectance

Backward photon tracing

- Forward Monte Carlo extremely inefficient for thermal radiative transfer
- Reciprocity principle allows to trace photon backwards starting from the sensor until their point of emission

Monte Carlo Method - ARTS-MC

- 3D radiative transfer solver for the thermal spectral range (Davis et al., 2005)
- Specials:
- oriented particles
- polarisation
- backward tracing method
- spherical geometry
- Applications:
- Investigate 3D effects in cloud remote sensing
- Limb sounding (including inhomogeneous clouds)

3D cloud scenario

Scenario generated based on radar data and stochastical method. Software by R. Hogan. [Davis et al., ACP 2007]

Ice water content slices from 3D scenario

Results for AMSU-B Channel 20

3D - red squares, IPA - blue circles, 1D - green triangles aspect ratio 1.3 - solid, aspect ratio 3.0 - hollow

Summary of ARTS scattering modules

- Two modules: Discrete Ordinate and Monte Carlo
- Spherical model atmosphere: 1D and 3D
- Polarization included
- Particle shapes: rotationally symmetric (spheroids, cylinders, plates)
- Orientations: Horizontally aligned, random

Comparison between DOIT and MC

—clear sky
—DOIT
Frequency: 230 GHZ

- Monte Carlo

Conclusions and discussion

- What is included in ARTS:
- Two modules to calculate polarized RT with multiple scattering (MC and DOIT), unique methods because they work in spherical geometry and with oriented particles
- Depending on the application, the user has to decide which method to use
- What is missing in ARTS?
- Parameterization of cloud optical properties (e.g. Hong et al. (2008), pre-calculated optical properties))?
- Fast solver for 1D plane-parallel atmosphere (to simulate Cloudlce)?
- Very fast (twostream) solver to compute OLR?

