Polarization Study using ARTS

Claas Teichmann Claudia Emde

Bredbeck Workshop 21-24 June 2004

Bredbeck Workshop, 21-24 June 2004

Contents

- Definitions and Setup
- Effect of gas absorption and scattering properties on Q (p20)
- Consistency check for 318 GHz and 500 GHz
- Q depending on aspect ratio
- Limb radiances
- Summary and Outlook

Definitions

• Types of scattering media

p20 : randomly oriented particlesp30 : azimuthally randomly oriented particles

• Definition of stokes vector components

$$I = I_v + I_h$$
$$Q = I_v - I_h$$

Simulation Setup

• cloud setup

```
pnd : 43199 \frac{1}{m^3}

r_{eff} : 68.5 \ \mu m

particle size distribution : \Gamma, mono

\Rightarrow imc : 0.02 \frac{g}{m^3}, 0.05 \frac{g}{m^3}

cloudheight : 10.6 - 12.3 \ km
```

• atmospheric setup

```
midlatitude-summer scenario
profiles : FASCOD
species : H_2O, O_3, N_2, O_2
spectroscopical data : HITRAN
```

• numerical setup

```
cloudbox : 6-16 km ssp : from Mishchenko (\Gamma-distr.) and PyARTS (mono-distr.)
```


Polarization difference field (p20, Γ , 323 Ghz)

Q limb2_1_323.i_field 14 0.8 12 0.6 0.4 10 0.2 height [km] 8 0 -0.2 6 -0.4 4 -0.6 2 -0.8 -1 20 80 100 120 140 40 60 160 zenith angle[deg] spherical particles

Effect of gas absorption and scattering properties (p20, Γ)

Effect of gas absorption and scattering properties (p20, Γ)

Consistency check for 318 GHz

Consistency check for 500 GHz

Lines of sight in the cloud

Polarization Study using ARTS

Q depending on aspect ratio (p20, 318 Ghz)

Q depending on aspect ratio (p30, 318 Ghz)

Lines of sight from the satellite

Polarization Study using ARTS

Bredbeck Workshop, 21-24 June 2004

Limb radiances for p20 and p30 (318 Ghz)

Limb radiances for p20 and p30 (500 Ghz)

Summary and Outlook

• Summary

- Polarization difference depends strongly on the gas absorption
- Polarization difference depends weakly on the single scattering properties inside a MASTER band (p20)
- For spheroidal particles the polarization difference increases with the absolute value of the aspect ratio
- For spheroidal azimuthally randomly oriented particles (p30) the polarization difference is stronger than for totally randomly oriented particles (p20)
- Outlook
 - Further investigations of azimuthally randomly oriented particles (p30) will be performed
 - Dependency of polarization difference on aspect ratio, frequency, particle size, particle orientation, gas absorption and ice mass content

