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Abstract

In this paper we present di0erent inversion algorithms for nonlinear ill-posed problems arising in atmo-
sphere remote sensing. The proposed methods are Landweber’s method (LwM), the iteratively regularized
Gauss–Newton method, and the conventional and regularizing Levenberg–Marquardt method. In addition,
some accelerated LwMs and a technique for smoothing the Levenberg–Marquardt solution are proposed. The
numerical performance of the methods is studied by means of simulations. Results are presented for an inverse
problem in atmospheric remote sensing, i.e., temperature sounding with an airborne uplooking high-resolution
far-infrared spectrometer.
? 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Optimal estimation, otherwise known as Bayesian inversion, is the dominating approach in atmos-
pheric remote sensing [1]. In this approach a priori information about the atmospheric state is encap-
sulated in the form of probability distributions, which are independent of the observed data. When
such distributions are combined with probabilistic information about data uncertainties (both random
and theoretical) it is possible to derive a <nal (a posteriori) probability distribution assimilating
both types of information. From a deterministic point of view optimal estimation is equivalent to
Tikhonov regularization with a regularization term given by the a priori covariance matrix of the
solution. However, the construction of the a priori probability distribution is a controversial matter
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when the statistical information about the atmosphere variability is poor. In this case iterative reg-
ularization methods like Landweber’s method (LwM), the Gauss–Newton method (GNM), or the
Levenberg–Marquardt method (LMM) are pleasant alternatives.

A convergence theory for LwM for solving nonlinear ill-posed problem was <rst developed by
Hanke et al. [2] and Binder et al. [3]. The iteratively regularized GNM was introduced by Bakushin-
skii [4] and its mathematical foundations were discussed by Blaschke et al. [5], Hohage [6], and
DeuKhard et al. [7]. In atmospheric inversion this method was used by Tautenhahn [8] for tem-
perature retrieval. Tautenhahn used the identity matrix as regularization matrix and a parameter
choice method based on the noise level. The convergence of a so-called regularizing LMM for
ill-posed problems has been proven by Hanke [9]. Hanke used the regularizing LMM for parameter
identi<cation problems arising in inverse groundwater hydrology. Note that the applicability of the
conventional LMM [10] for ill-posed problems is still an open research topic.

In the present paper we analyze the performances of the above mentioned iterative regularization
methods for the inversion problem of a vertical temperature pro<le from atmospheric spectroscopic
measurements.

2. Formulation of the discrete problem

Atmospheric remote sensing in the microwave or infrared spectral regions utilizes measurements of
the thermal emission of the atmosphere. From a computational point of view the basic problem is the
inversion of the radiative transfer equation [11]. For an arbitrary slant path, the intensity (radiance)
I at wavenumber � received by an instrument at position r̃ is given by (neglecting scattering and
assuming local thermodynamical equilibrium)

I(�) = Ib(�)T(�; r̃; r̃b) +
∫
|̃r−r̃b|

�(�; r̃ ′)B(�; T (̃r ′))T(�; r̃; r̃ ′) ds′; (1)

where B is the Planck function at temperature T; Ib is the background contribution at position r̃b,
and the integration is performed along the path segment between r̃ and r̃b. The monochromatic
transmission T and the absorption coeMcient � are related by Beer’s law according to

T(�; r̃; r̃0) = exp

(
−
∫
|̃r−r̃0|

�(�; r̃ ′) ds′
)

= exp

[
−
∫
|̃r−r̃0|

∑
g

kg(�; p(̃r ′); T (̃r ′))ng(̃r ′) ds′
]
; (2)

where p is the atmospheric pressure, ng is the number density of molecule g and kg is its absorption
cross-section. In general, the absorption cross-section is obtained by summing over the contributions
from many lines. For an individual line the spectral absorption cross section is the product of the
temperature-dependent line strength and a normalized line shape function describing the broadening
mechanism. For the infrared and under atmospheric conditions, the combined e0ect of pressure
broadening (corresponding to a Lorentzian line shape) and Doppler broadening (corresponding to a
Gaussian line shape) can be represented by a Voigt line pro<le. The instrumental response is taken
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into account by convolution of the monochromatic intensity spectrum (1) with an instrumental line
shape function.

Spectroscopic instruments working in the infrared spectral region measure the intensity at a <nite
number m of typically equidistant wavenumbers �i with i=1; : : : ; m. Therefore, a collocation method is
used to discretize the integral equation (1). In addition, a quadrature approach is used to discretize
the integrals in (1) and (2). As there is an unique relation between the path variable s and the
altitude h, it is convenient to consider the temperature or the molecular density pro<les at altitudes
hj; j = 1; : : : ; n, as unknowns of the inverse problem.

The discretization process leads to the nonlinear system of equation

y = F(x); (3)

where the mapping F :Rn → Rm; F = [fi]mi=1, representing the forward model is assumed to be
continuously di0erentiable, y∈Rm is the exact data vector and x∈Rn is the state vector containing
the atmospheric parameters (temperature and/or molecular density pro<les) to be retrieved. Here
Rn stands for the n-dimensional real Euclidian space with the usual inner product 〈x; y〉 = xTy,
while ‖ · ‖ denotes the l2 vector norm and the subordinated l2 matrix norm. In our analysis we
assume that the exact data are attainable, i.e., that there exists the exact solution x̂∈D(F) ⊆
Rn such that y = F(x̂). Measurements are made to a <nite accuracy and in practice only the
noise data vector y�, y� = y + �, is available. In this context we consider a semi-stochastic data
model in the sense that the exact solution x̂ is deterministic but the measurement error � is
stochastic with zero mean and the covariance matrix S�; S� = �2I , where I is the identity
matrix.

3. Iterative regularization methods for the discrete problem

The goal of our analysis is to <nd the state vector x� that is consistent with the data and what-
ever other deterministic information are available. An estimate x� can be found by approximately
minimizing the so-called output least-squares function

F(x) =
1
2
‖F(x) − y�‖2 (4)

possibly by an iterative method. The Gauss–Newton method for the minimization of (4) is de<ned
by the iterative solution

x�k+1 = x�k − (F ′(x�k)
TF ′(x�k))

−1[F ′(x�k)
T(F(x�k) − y�)]; (5)

where F ′(x)∈Rm×n denotes the Jacobian matrix (@jfi(x)) evaluated at x.
In an abstract Hilbert space setting the generalized inverse of F ′∗F ′ (where F ′∗ denotes the adjoint

of F ′) is usually unbounded, so that each iteration would be unstable. Therefore, the term F ′∗F ′ has
to be replaced by an operator with a bounded inverse. Due to the inherent instability of ill-posed
problems, an iteration method has to be stopped appropriately to guarantee stability of the iterates.
In this case the iterative method becomes a regularization method.
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3.1. Landweber’s method

In the <nite-dimensional version of LwM the term (F ′(x�k)
TF ′(x�k))

−1 in Eq. (5) is replaced by
the identity matrix. This results in the method

x�k+1 = x�k − !F ′(x�k)
T(F(x�k) − y�); (6)

where ! is a relaxation parameter. The Landweber iterates x�k allow a stable and convergent approx-
imation of the solution x̂ provided the discrepancy principle is used as an a posteriori stopping rule,
that is, the iteration is stopped at the <rst index k∗ = k∗( ) for which

‖F(x�k∗) − y�‖6 ! ¡ ‖F(x�k) − y�‖; 06 k ¡k∗; (7)

where !¿ 1 and  is an upper bound for the error, ‖�‖6 . In practice, this bound can be choosen
as the expected value of ‖�‖,  =

√
E{‖�‖2} = �

√
m, where E is the expected value operator. In

LwM the iteration index plays the role of the regularization parameter and the stopping criterion is
the counterpart of the parameter choice rule in continuous regularization methods. For more details
concerning the convergence of LwM for nonlinear problems we refer to DeuKhard et al. [7].

Often the number of iterative steps required to obtain useful approximations of the solution is
too large. Several attempts have been made in the literature to speed up the iteration. The �-method
(�M) of Brakhage (cf., e.g., [12]) is a two-step semi-iterative method for the linear equation Kx=y
and is given by

pk = %k(x�k − x�k−1) − !kKT(Kx�k − y�); (8)

x�k+1 = x�k + pk

for k¿ 0, where

%k =
k(2k − 1)(2k + 2�+ 1)

(k + 2�)(2k + 4�+ 1)(2k + 2�− 1)
;

!k = 4
(2k + 2�+ 1)(k + �)
(k + 2�)(2k + 4�+ 1)

for k ¿ 0 and

%0 = 0; !0 =
4�+ 2
4�+ 1

:

Here � is a positive parameter which has to be chosen in advance. The �M in combination with the
discrepancy principle as an a posteriori stopping rule is a regularization method in the sense of Engl
et al. [12]. For a proof we refer to [13].

For moderately nonlinear problems we propose the following modi<ed �M:

pk = %′k(x
�
k − x�k−1) − !kF ′(x�k)

T(F(x�k) − y�);

x�k+1 = x�k + akpk : (9)
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The parameter %′k is choosen such that pk is a descent direction, i.e., g(x�k)
Tpk ¡ 0, where g(x�k) =

F ′(x�k)
T(F(x�k) − y�) is the gradient of F at x�k . A possible scheme for parameter selection is

%′k =



%k ifg(x�k)

Tpk ¡ 0;

'!k
g(x�k)

Tg(x�k)
g(x�k)T(x�k − x�k−1)

else;

where 0¡'¡ 1. Since pk is a descent direction we determine the step length ak so that the objective
function (4) is suMciently reduced. While this is a purely heuristic method, certain regularizing
properties of the modi<ed �M will be numerically veri<ed.

Other schemes can be constructed in the same manner. For instance, the choice !k = ! in (9)
leads to

pk = %′k(x
�
k − x�k−1) − !F ′(x�k)

T(F(x�k) − y�); (10)

while the use of stabilization term %′k(x
�
k − x0) gives

pk = %′k(x
�
k − x0) − !F ′(x�k)

T(F(x�k) − y�): (11)

The methods using the schemes (10) and (11) for search direction computation will be referred to
as the modi<ed LwM.

3.2. The regularized Gauss–Newton method

In the discrete case the regularized GNM uses the stabilization term

(�kLTL+ F ′(x�k)
TF ′(x�k))

−1�kLTL(x�k − xa);

i.e.,

x�k+1 = x�k − (�kLTL+ F ′(x�k)
TF ′(x�k))

−1

×[F ′(x�k)
T(F(x�k) − y�) + �kLTL(x�k − xa)]; (12)

where L is some regularization matrix, (�k) is a monotonically decreasing sequence and xa is the a
priori state vector, the best beforehand estimate of x̂. The iterative process is stopped according to
the discrepancy principle (7). Note that x�k+1 has the variational characterization

Fl
k(x) = ‖F(x�k) − y� + F ′(x�k)(x − x�k)‖2 + �k‖L(x − xa)‖2: (13)

For a detailed analysis related to convergence results for di0erent source conditions and nonlinearity
assumptions on the mapping F we refer to [4–7]. A priori information like measures of solution
magnitude and smoothness can be incorporated in the regularization matrix in order to stabilize the
iterative process. The regularization matrix L is typically either the identity matrix (L = L0 = I),
a diagonal weighting matrix or a discrete approximation to the <rst (L = L1) or second (L = L2)
derivative operator. Combining several derivative orders allows to take into account both types
of information simultaneously. In this case the regularization matrix is determined by the Cholesky
factorization LTL=

∑2
k=0 wkL

T
k Lk with wk¿ 0 and

∑2
k=0 wk=1. The weighting factors wk are chosen

in accordance with the peculiarities of the solution. The sequence of regularization parameters (�k)
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is constructed as suggested in [14,15],

�k = *�LCk + (1 − *)�k−1; 06 *6 1; (14)

where �LCk is the regularization parameter for the linear subproblem (13) chosen by the L-curve
criterion [16]. This parameter choice method allows enough regularization to be applied at the
beginning of iterations and then to be gradually decreased. A numerical robust method for computing
the new iterate x�k+1 and the regularization parameter �LCk relies on the use of the generalized singular
value decomposition of the Jacobian and the regularization matrix [16].

3.3. The Levenberg–Marquardt Method

In the LMM the term (F ′(x�k)
TF ′(x�k))

−1 in (5) is replaced by (�kI + F ′(x�k)
TF ′(x�k))

−1, which
results in the method

x�k+1 = x�k − (�kI + F ′(x�k)
TF ′(x�k))

−1F ′(x�k)
T(F(x�k) − y�): (15)

For comparison with the iteratively regularized GNM (13), we note that x�k+1 has the variational
characterization

Fl
k(x) = ‖F(x�k) − y� + F ′(x�k)(x − x�k)‖2 + �k‖x − x�k‖2: (16)

From (16) we see that the LMM does not take into account a priori information about the smoothness
of the solution.

In conventional software packages (cf., e.g., [10]) the regularization parameter �k is selected on
the grounds of a trust region strategy. If the trust region (in which the linearized functional is
minimized) is a sphere of radius ,k , and x�k;� denotes the minimizer of Fl

k(x) for a given parameter
�, then the regularization parameter �k is chosen as the solution of the secular equation

‖x�k;� − x�k‖ = ,k (17)

and the new approximation is de<ned as x�k+1 = x�k;�k . Note that among all x with ‖x− x�k‖6 ,k; x�k;�k
is the unique minimizer of ‖F(x�k)−y�+F ′(x�k)(x−x�k)‖. The radius ,k of the trust region is modi<ed
so that the objective function decreases for each iteration and the linear model is accurate within the
trust region. The diMculty of this approach is an appropriate strategy for choosing ,k which must
rely on heuristic considerations. For the conventional implementation it is not clear what kind of
stopping rule would be appropriate for ill-posed problems. In our implementation the convergence
of iterates is used as stopping criteria. Note that the iterates of the Levenberg–Marquardt algorithm
converges to a minimizer of (4) if the data y = F(x̂) are given exactly but the sequence cannot
converge if no solution of y� = F(x) exists.

The regularizing LMM copes with the ill-posedness of the problem and selects the regularization
parameter �k from a trust region approach for the error 'k = y� − y + R(x�k ; x̂) rather some trust
region around x�k [9]. Here

R(x�k ; x̂) = F(x̂) − F(x�k) − F ′(x�k)(x̂ − x�k)

denotes the Taylor remainder for the linearization around x�k . With & being a positive parameter,
&¡ 1, the actual regularization parameter �k will be determined from

‖F(x�k) − y� + F ′(x�k)(x
�
k;� − x�k)‖ = &‖F(x�k) − y�‖: (18)
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Among all x with

‖F(x�k) − y� + F ′(x�k)(x − x�k)‖6 &‖F(x�k) − y�‖;
x�k;�k is the unique element of minimal norm. This choice of �k leads to a stable approximation of
x̂, provided that the discrepancy principle (7) is choosen as stopping rule, and some nonlinearity
assumptions on the mapping F are satis<ed [9].

Because the regularizing LMM does not take into account a priori information about the smooth-
ness of the solution, an a posteriori technique for improving the inversion performance can be given
as follows:

(1) Let x�k∗ be the solution obtained by using the discrepancy principle. Smooth the solu-
tion by using Tikhonov regularization, that is, determine x�smooth by minimizing the objective
function

F(x) = ‖x − x�k∗‖2 + �‖L2x‖2; (19)

where � is chosen according to the L-curve criterion [16].
(2) Choose x�smooth as initial guess and restart the algorithm.

180 200 220 240 260 280

Temperature [K]

10

20

30

40

50

60

A
lti

tu
de

 [k
m

]

Landweber’s method
  ν-Method
exact solution
initial guess

Fig. 1. Result of temperature retrieval using LwM and the �M for a signal-to-noise ratio of SNR = 100.
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4. Numerical simulations

The background of our simulations is a study on the feasibility of (stratospheric) temperature
retrievals from high-resolution far-infrared spectra observed by an airborne instrument. Far-infrared
spectroscopy o0ers superior means to measure numerous stratospheric species from airborne, bal-
loonborne, or spaceborne platforms (cf., e.g. [17]). The atmospheric spectrum is characterized by
individual lines due to pure rotational transitions while the line pro<le is dominated by pressure
broadening up to the stratosphere. Furthermore, aerosol scattering e0ects are negligible.

Ideally the (discretized) pro<le of the particular gas under investigation is the only unknown of the
inverse problem. Unfortunately, as indicated by Eqs. (1) and (2) the atmospheric spectrum depends
on pressure, temperature, and other gases with nonnegligible contributions in the selected spectral
range, i.e., the state vector x comprises discretized representations of all these pro<les. Thus, in
order to keep the number of unknowns reasonably small (and hence the condition of the problem)
assumptions have to be made on pressure, temperature and interfering species pro<les. In practice
these pro<les are taken from climatological datasets, etc. Nevertheless, in view of the dominating
role of temperature in the infrared, a better knowledge of the actual temperature pro<le would be
advantageous for remote sensing of atmospheric composition.

Here the assessment of high-resolution far-infrared temperature soundings serves as an
exemplary study to analyze the performance of iterative regularization methods. The synthetic
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Fig. 2. Result of temperature retrieval using the iteratively regularized GNM with L= L0 and L= L2 (SNR = 100).
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measurement spectrum used in this retrieval study largely resembled typical THOMAS observations
made aboard the DLR research aircraft FALCON [18]. The 2:5 THz OH Measurement Airborne
Sounder THOMAS is a high-resolution heterodyne spectrometer measuring the atmospheric thermal
emission in the far-infrared. The dominant spectral signatures in the observed spectral region are
due to the hydroxyl radical (a rotational line triplet at 83:869 cm−1), water vapor (nb. the wing of
a strong line at about 84:456 cm−1), and ozone. An observer altitude of 12 km and a pointing angle
of 80◦ from zenith has been assumed in these simulations. A radiance spectrum (1) of m = 200
data points between 83.84 and 83:88 cm−1 was simulated using a line-by-line atmospheric radiative
transfer code [19]. Because water vapor, ozone, and the hydroxyl radical are dominant in the observed
spectral region, no other gases were considered. Note that in the far-infrared highly altitude-dependent
pressure broadening is dominant in the troposphere and stratosphere, whereas Doppler broadening is
dominant in the upper atmosphere. The exact atmospheric temperature pro<le x̂ as well as p;H2O;O3,
and OH data were taken from the US standard atmosphere. For the exact temperature pro<le a
noise contaminated spectrum with a signal-to-noise ratio of 100 and 1000 was generated. Here the
signal-to-noise ratio is de<ned as SNR = ‖y�‖=(�√m).

The state vector x was selected as a discretized representation of the temperature pro<le assuming
a vertical grid with 2:5 km spacing. The a priori and initial pro<le of temperature xa and x�0, respec-
tively, were assumed to be identical and were choosen as a scaled version of the exact pro<le by a
factor of 0.85, i.e., xa = x�0 = 0:85x̂.
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Fig. 3. Result of temperature retrieval using the LMM (SNR = 100).
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Table 1
Relative errors ' = ‖x̂ − x�k∗‖=‖x̂‖ and iteration count n for Landweber’s method (LwM), the modi<ed �-method (�M)
the iteratively regularized Gauss–Newton method (GNM) with L= L0, and L= L2, and the conventional and regularizing
Levenberg–Marquardt method (LMM)

LwM �M GNM-L0 GNM-L2 LMM-conv. LMM-reg.

' (%) 3.48 3.09 3.21 0.5 3.48 3.10
n 97 53 5 3 10 6
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Fig. 4. Result of temperature retrieval using the modi<ed LwMs and the �M (SNR = 1000).

The problem is moderately nonlinear. In order to indicate the nonlinearity of the problem we
mention that the Euclidian norms of the Jacobian K at two di0erent states, one of which corre-
sponds to the exact solution x̂ and the other to the initial guess x�0 are 351.15 and 420.26, res-
pectively.

The retrieved pro<les for a signal-to-noise ratio of 100 are plotted in Figs. 1–3. The relative
errors ' ≡ ‖x̂ − x�k∗‖=‖x̂‖, and the iteration count are shown in Table 1. The parameter � for the
modi<ed �-method was choosen as 0.75, while the conventional Levenberg–Marquardt algorithm
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Fig. 5. History of the relative residuals Fr=F(x�k)=(m�
2) (<lled circles), the relative change of iterates '=‖x�k−x�k−1‖=‖x�k‖

(+), and the relative errors ' = ‖x̂ − x�k∗‖=‖x̂‖(×) for the conventional LMM.

was stopped when the relative change of iterates ' ≡ ‖x�k − x�k−1‖=‖x�k‖ was smaller than 0.5%. The
modi<ed �-method gives comparable accuracy as Landweber’s method but the speed of convergence
is faster. The iteratively regularized Gauss–Newton solution with L=L0 and the Levenberg–Marquardt
solutions show pronounced oscillations. These results are a consequence of the algorithms’ inability
to account for the smoothness of the exact solution. In this context, the behavior of the exact solution
can at best be reproduced by the iteratively regularized GNM with the L2 regularization matrix. Note
that oscillations in the upper atmosphere are also related to the reduced altitude information due to
the dominant Doppler broadening.

The modi<ed �-method appears to be a regularization method for the nonlinear problem under
examination. The relative error decreases from 3.09% to 1.34% if the signal-to-noise ratio increases
from 100 to 1000. We mention that essentially the inversion performances of the modi<ed Landweber
methods are similar to that of the modi<ed �-method. The retrieved pro<les for a signal-to-noise
ratio 1000 are plotted in Fig. 4.

The conventional LMM gives comparable accuracy as the regularizing scheme. Because in the
conventional implementation the choice of an appropriate stopping rule is an interesting open prob-
lem, we show in Figs. 5 and 6 the history of the relative residuals Fr ≡ F(x�k)=(m�

2), the relative
change of iterates ' and the relative errors '. The conventional algorithm was stopped after 10
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Fig. 6. History of the relative residuals Fr =F(x�k)=(m�
2) (circles), and the relative errors '= ‖x̂− x�k∗‖=‖x̂‖(×) for the

regularizing LMM.

iterations when '6 0:5%. In this case the relative error with respect to the exact solution was 3.48%.
If the algorithm would be stopped according to the discrepancy principle (i.e., after 7 iterations
when Fr ¡ 0:5) the relative error would be about 3.29% and the computational e0ort would be
substantially reduced.

In Fig. 7 we show the solutions that were obtained by smoothing the regularizing Levenberg–
Marquardt solutions, cf. (19). The solutions correspond to two values of the signal-to-noise ratio,
SNR = 100 and SNR = 1000. The relative errors decrease from 3.10% to 1.44% for SNR = 100 and
from 1.87% to 0.75% for SNR = 1000.

5. Conclusions

The computational performance and accuracy of a variety of iterative regularization methods has
been investigated numerically for an atmospheric retrieval problem.

Landweber’s method (LwM) and its modi<ed versions lead to smooth solution with comparable
accuracy. The computer time of the modi<ed �-method is lower than that of LwM, but the speed
of convergence is not signi<cantly faster as in the linear case. We mention that in the linear case
the number of iterations can be reduced to about the square root. The numerical analysis indicated
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Fig. 7. Result of temperature retrieval using the regularizing LMM and the smoothing procedure: (a) SNR = 100 and
(b) SNR = 1000.

that the modi<ed �-method combined with the discrepancy principle as an a posteriori stopping
rule acts like a regularization method. Nevertheless, a rigorous proof of this result requires further
investigations.
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The iteratively regularized Gauss–Newton method (GNM) is the most eMcient method due to its
reduced computer time and high inversion performances. Various a priori information like magnitude
and smoothness of the solution or ‘incomplete’ statistical information can be incorporated in the
regularization matrix to obtain accurate results [15].

The numerical simulations demonstrated that the regularizing version of the Levenberg–Marquardt
method (LMM) converges faster than the conventional approach. The explanation lies in the fact
that the regularization parameter is chosen from two di0erent adaptive strategies. However, the
di0erences between the reconstruction performances are not signi<cant, at least for the particular
example consider in Section 4. The simulations indicate that the discrepancy principle can be used
in the conventional implementation without any loss of solution accuracy. Whether the conventional
LMM with the discrepancy principle as an a posteriori stopping rule is a regularization method
remains to be clari<ed. A technique for improving the inversion performances of the regularizing
LMM was also presented. This method relies on the use of Tikhonov regularization to smooth the
solution.

The essential conclusion to be drawn is that the iteratively regularized GNM is an eMcient can-
didate for regularizing ill-posed inverse problems in atmosphere remote sensing.
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